ChatGPT带领着大模型像雨后春笋一般层出不穷,大家都对大模型微调跃跃欲试,现在咱们聊聊其中的常见的算法1LORA理论低秩矩阵分解(LowRankMatrixFactorization,LRMF)是一种常见的数据降维技术,它可以将高维数据映射到低维空间中,并尽量保留原始数据的重要信息。LoRA(L
前言因为毕设中的部分内容涉及到卫星遥感影像道路分割,因此去对相关算法做了一些调研。本文所使用数据集为DeepGlobe,来自于CVPR2018年的一个挑战赛:DeepGlobeRoadExtractionChallenge。D-LinkNet为该挑战赛的冠军算法。考虑到D-LinkNet开发版本较老
时间序列分析季节分解时间序列的数值变化规律SPSS对数据预处理SPSS季节性分解时间序列分析的具体步骤建立时间序列分析模型指数平滑模型ARIMA模型时间序列分析解题步骤(论文写作)论文写作步骤实际SPSS操作步骤时间序列分析时间序列也称动态序列,是指将某种现象的指标数值按照时间顺序排列而成的数值序列
前言今天的模型是DeepFM,这算是一个非常经典的模型了。在介绍这个模型之前先针对之前模型的不足进行一个小总结,这也是DeepFM模型提出来的一个原因。CTR预测任务中,高阶特征和低阶特征的学习都非常的重要。推荐模型我们也学习了很多,基本上是从最简单的线性模型(LR),到考虑低阶特征交叉的FM,到考
欢迎交流学习~~专栏:机器学习&深度学习本文利用Python对数据集进行数据分析,并用多种机器学习算法进行分类预测。具体文章和数据集可以见我所发布的资源:发布的资源Python|基于LendingClub数据的分类预测研究Part01——问题重述+特征选择+算法对比零、问题重述&背景
1.随机森林算法1.1.集成模型简介集成学习模型使用一系列弱学习器(也称为基础模型或基模型)进行学习,并将各个弱学习器的结果进行整合,从而获得比单个学习器更好的学习效果。集成学习模型的常见算法有聚合法算法(Bagging)、提升算法(Boosting)和堆叠法(Stacking)Bagging算法的
数据挖掘的行业应用范围非常广泛,这些行业所面临的具体问题或许不同,但真要研究起来却总绕不过四类问题:聚类、预测、关联与模式识别,其实很多切入点、分析思路都是类似的。下面是一些常用于研究这四类问题的模型与算法。基本统计方法方差分析:研究分类变量与数值型变量的相关关系相关分析:主要研究数值变量间的线性相
1、线性回归模型适用于自变量X和因变量Y为线性关系,具体来说,画出散点图可以用一条直线来近似拟合。模型可以表达为:{y=Xβ+εε∼MVN(0,σ2In),其中ε是随机误差,MVN为多元正态分布。模型有几个基本假设:自变量之间无多重共线性;随机误差随从0均值,同方差的正态分布;随机误差项之间无相关关
前言最近在看微软开源的机器学习框架ML.NET使用别人的预训练模型(开放神经网络交换格式.onnx)来识别图像,然后逛github发现一个好玩的repo。决定整活一期博客。首先还是稍微科普一下机器学习相关的知识,这一块.NET虽然很早就开源了ML.NET框架,甚至在官方的ML.NET开源之前,就有一
1.问题背景在深度学习中,目标识别问题是我们所熟知的最经典最重要的问题之一。目标识别需要在一幅大图片中定位到多个目标的位置和类别。目标检测的应用范围很广,比如在超市通过视频检测消费者的进出、工业制造业领域中的异常行为检测等。另一个典型的场景是,在自动驾驶时车辆需要定位视线范围内的所有物体,并识别其类
文章目录本文内容HuggingFace简介HuggingFace模型讲解Transforms简介Transformers安装使用Transformers进行推理查找HuggingFace模型使用HuggingFace模型迁移学习HuggingFace数据集讲解安装Datasets类库查找数据集加载数
1、含义鲁棒是Robust的音译,也就是健壮和强壮的意思。它也是在异常和危险情况下系统生存的能力。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,也是指控制系统在一定(结构,大小)的参数摄动下,维持其它某些性能的特性。根据对性
近期,OpenAI发布了Whisper语音识别模型,声称其在英语语音识别方面已接近人类水平的鲁棒性和准确性。出于对自动语音识别的兴趣,本人对此进行了一些尝试,看看它对中文语音识别的效果。 &nb
前言最近把李沐大神《动手学深度学习v2》的目标检测部分学完了,就想找一个项目练练手,学以致用嘛,觉着人脸口罩佩戴检测比较符合当下时代背景,所以就选择了这个项目,也是前几天刚刚完成的,写下这篇博客记录一下具体过程,废话不多说,现在开始吧。文章目录前言一、数据集获取与介绍二、数据预处理三、下载YOLOv
Python时间序列分析–ARIMA模型实战案例,利用ARIMA模型对时间序列进行分析的经典案例(详细代码)**本文将介绍使用Python来完成时间序列分析ARIMA模型的完整步骤与流程,绘制时序图,平稳性检验,单位根检验,白噪声检验,模型定阶,参数估计,模型检验等完整步骤。Python建立时间序列
今天,就树哥一起与你一起重温下这几个知识点的联系与理解吧。Java内存模型网上关于Java内存模型的内容特别多,很多都讲到了多CPU与缓存的数据一致性问题,于是顺带牵出了MESI等缓存一致性协议。其实到这里都没问题,都挺有逻辑的。但接下来为啥有Java内存模型?为啥又有happens-before原
Django是一个python开发者都比较熟悉的一个框架,这个属于web方向的开发框架,而且Django是属于大而全的,最出名的应该属于其全自动化的管理后台了,我们只需要使用ORM,做一些简单的对象定义,就可以自动生成对应的数据库的表结构,以及全功能的管理后台。Django框架的特点功能较为完善,
大数据文摘出品来源:topbots编译:武帅在一场科技会议上,演讲者询问观众,“有谁为自己的业务开发过机器学习或者人工智能模型?”80%到90%的人都举起了手。“那么,你们当中有谁将它投入生产了呢?”演讲者继续发问。几乎所有的人都放下了手。显而易见,几乎每个人都想在他们的业务中引入机器学习,但是这些
最近,北大开源了一个中文分词工具包,它在多个分词数据集上都有非常高的分词准确率。其中广泛使用的结巴分词误差率高达18.55%和20.42,而北大的pkuseg只有3.25%与4.32%。pkuseg是由北京大学语言计算与机器学习研究组研制推出的一套全新的中文分词工具包。它简单易用,支持多
近几年来,兴起了一股人工智能热潮,让人们见到了AI的能力和强大,比如图像识别,语音识别,机器翻译,无人驾驶等等。总体来说,AI的门槛还是比较高,不仅要学会使用框架实现,更重要的是,需要有一定的数学基础,如线性代数,矩阵,微积分等。幸庆的是,国内外许多大神都已经给我们造好“轮子”,我们可以直接来使用某