LVI-SAM是TixiaoShan大佬在他之前LIO-SAM工作基础上耦合了视觉惯性里程计,算法包含雷达惯性里程计模块及视觉惯性里程计模块,其中视觉惯性里程计采用VINS-MONO,其实整体设计是为了在雷达退化的场景中,使用视觉里程计定位结果代替雷达退化方向位姿,同时利用雷达惯性里程计结果初始化整
背景说明在最近的项目开发中,遇到一个Python处理性能问题:由于实时数据量较大(每秒有2100条日志,且每条日志平均大小在1kB左右),且受制于硬件资源限制,使用Python做实时数据处理,无法完成当前规模的数据集处理能力,数据越积越多,数据入库延时越来越长!第一版Python实现,其
在并发编程时,如果多个线程访问同一资源,我们需要保证访问的时候不会产生冲突,数据修改不会发生错误,这就是我们常说的线程安全。那什么情况下,访问数据时是安全的?什么情况下,访问数据是不安全的?如何知道你的代码是否线程安全?要如何访问数据才能保证数据的安全?本篇文章会一一回答你的问题。1.线程不安全是怎
最近测试给我提了一个bug,说我之前提供的一个批量复制商品的接口,产生了重复的商品数据。追查原因之后发现,这个事情没想象中简单,可以说一波多折。1.需求产品有个需求:用户选择一些品牌,点击确定按钮之后,系统需要基于一份默认品牌的商品数据,复制出一批新的商品。拿到这个需求时觉得太简单了,三下五除二就搞
目录前言一、cuda的下载及安装1.cuda版本2.CUDAtoolkitDownload3.cuda安装二、cuDNN下载及安装1.cuDNN下载2.cuDNN配置前言windows10版本安装CUDA,首先需要下载两个安装包CUDAtoolkit(toolkit就是指工具包)cuDNN注:cuD
本文章基于yolov5-6.2版本。主要讲解的是yolov5是怎么在最终的特征图上得出物体边框、置信度、物体分类的。一。总体框架首先贴出总体框架,直接就拿官方文档的图了,本文就是接着右侧的那三层输出开始讨论。Backbone: NewCSP-Darknet53Neck: SPPF
一、问题与数据研究者研究了16名健康人在五种状态(P1、P2、P3、P4、P5)下的参数(MS_A、MS_B、MS_C、MS_D)是否存在显著性差异;每种状态下均有参数(MS_A、MS_B、MS_C、MS_D)。因为自变量均为Within-subjectfactors时,故用Two-wayrepea