深圳幻海软件技术有限公司 欢迎您!

  • 数据稀疏如何学好Embedding?

    ​在推荐系统中,冷启动或长尾是一个常见的问题,模型在数据量较少的user或item上的预测效果很差。造成冷启动样本预测效果不好的重要原因之一是,冷启动样本积累的数据比较少,不足以通过训练得到一个好的embedding(通过user或item的id,映射到一个可学习的向量),进而导致模型在这部分样本上

  • 冷启动系统优化与内容潜力预估实践

    背景每平每屋是阿里巴巴旗下家居家装平台,涵盖淘宝每平每屋家居频道、每平每屋设计家、每平每屋App、每平每屋制造业等家居全链路服务,为消费者提供了2D短图文、长图文、3D样板间、3D短视频、VR全屋漫游等丰富多元的家居内容,逐渐成为当代年轻人生活灵感与家居装修的向导之一。淘宝内的每平每屋频道是每平每屋

推荐阅读