深圳幻海软件技术有限公司 欢迎您!

【tensorflow】制作自己的数据集

2023-02-28

  🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🥰博客首页:knighthood2001😗欢迎点赞👍评论🗨️❤️热爱python,期待与大家一同进步成长!!❤️目录数据集的基本介绍tensorflow中的数据集什么是TFDS安装TFDS用TFDS加

  🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝

🥰 博客首页:knighthood2001

😗 欢迎点赞👍评论🗨️

❤️ 热爱python,期待与大家一同进步成长!!❤️

目录

数据集的基本介绍

tensorflow中的数据集

什么是TFDS

安装TFDS

用TFDS加载数据集

实例:将模拟数据制作成内存对象数据集

①生成模拟数据

②定义占位符

③建立session会话,获取并显示模拟数据。

④模拟数据可视化

运行结果

改进:创建带有迭代值并支持乱序功能的模拟数据集 


数据集的基本介绍

        数据集是样本的集合,在深度学习中,数据集用于模型训练。再用tensorflow框架开发深度学习模型之前,需要为模型准备好数据集。在训练模型环节,程序需要从数据集中不断地将数据输入模型,模型通过对注入数据的计算来学习特征。

tensorflow中的数据集

tensorflow中有4种数据集格式

        内存对象数据集:直接用字典变量feed_dict,通过注入模式向模型中输入数据。该数据集适用于少量的数据集输入。

        TFRecord数据集:用队列式管道(tfrecord)向模型输入数据。该数据集适用大量的数据集输入。

        Dataset数据集:通过性能更高的输入管道(tf.data)向模型输入数据。该数据集适用于tensorflow1.4之后的版本。

        tf.keras接口数据集:支持tf.keras语法的数据集接口。该数据集适用于tensorflow1.4之后的版本。

什么是TFDS

        TFDS是tensorflow中的数据集集合模块,该模块将常用的数据及封装起来,实现自动下载与统一的调用接口,为开发模型提供了便利。

安装TFDS

要求:tensorflow版本在1.12及以上。安装命令如下:

pip install tensorflow-datasets

用TFDS加载数据集

这里以minst数据集为例

  1. import tensorflow_datasets as tfds
  2. print(tfds.list_builders())
  3. ds_train, ds_test = tfds.load(name='mnist', split=["train", "test"])
  4. ds_train = ds_train.shuffle(1000).batch(128).prefetch(10)
  5. for features in ds_train.take(1):
  6. image, label = features["image"], ["label"]

重要结果如下:

  1. Downloading and preparing dataset Unknown size (download: Unknown size, generated: Unknown size, total: Unknown size) to ~\tensorflow_datasets\mnist\3.0.1...
  2. Dataset mnist downloaded and prepared to ~\tensorflow_datasets\mnist\3.0.1. Subsequent calls will reuse this data.

实例:将模拟数据制作成内存对象数据集

        本实例将用内存中的模拟数据来制作成数据集,生成的数据集被直接存放在python内存对象中,这样做的好处--数据集的制作可以独立于任何框架

        本实例将生成一个模拟y≈2x的数据集,并通过静态图的方式显示出来。

步骤如下:

①生成模拟数据

②定义占位符

③建立session会话,获取并显示模拟数据。

④模拟数据可视化

①生成模拟数据

        在样本制作过程中,最忌讳的是一次性将数据都放入内存中,如果数据量很大,这样容易造成内存用尽,即使是模拟数据,也不建议将数据全部生成以后一次性放入内存中,一般做法是:

Ⅰ创建一个模拟数据生成器,

Ⅱ每次只生成指定批次的样本

这样就在迭代过程中,就可以用“随用随制作”的方法来获取样本数据。

        下面定义GenerateData函数来生成模拟数据,并将GenerateData函数的返回值设为以生成器方式返回。这种做法使内存被占用的最少

  1. import tensorflow as tf
  2. import numpy as np
  3. import matplotlib.pyplot as plt
  4. tf.compat.v1.disable_v2_behavior()
  5. #在内存中生成模拟数据
  6. def GenerateData(batchsize = 100):
  7. train_X = np.linspace(-1, 1, batchsize) #train_X为-1到1之间连续的100个浮点数
  8. train_Y = 2 * train_X + np.random.randn(*train_X.shape) * 0.3 # y=2x,但是加入了噪声
  9. yield train_X, train_Y #以生成器的方式返回

        函数使用yield,使得函数以生成器的方式返回数据。生成器对象只生成一次,过后便会自动销毁,可以省略大量的内存。

②定义占位符

  1. #定义网络模型结构部分,这里只有占位符张量
  2. Xinput = tf.compat.v1.placeholder("float", (None))
  3. Yinput = tf.compat.v1.placeholder("float", (None))

注意:在正常的模型开发中,这个环节应该是定义占位符和网络结构,在训练模型时,系统会将数据集的输入数据用占位符来代替,并使用静态图的注入机制,将输入数据传入模型进行迭代训练。因为本实例只需要从数据集中获取数据,所以只定义占位符,不需要定义其他网络节点。

③建立session会话,获取并显示模拟数据。

        首先定义数据集的迭代次数,接着建立会话,在会话中使用两层for循环;第一层是按照迭代次数来循环,第二层是对GenerateData函数返回的生成器对象进行循环,并将数据打印出来。

        因为GenerateData函数返回的生成器对象只有一个元素,所以第二层循环也只运行一次。

  1. #建立会话,获取并输出数据
  2. training_epochs = 20 # 定义需要迭代的次数
  3. with tf.compat.v1.Session() as sess: # 建立会话(session)
  4. for epoch in range(training_epochs): #迭代数据集20遍
  5. for x, y in GenerateData(): #通过for循环打印所有的点
  6. xv,yv = sess.run([Xinput,Yinput],feed_dict={Xinput: x, Yinput: y}) #通过静态图注入的方式,传入数据
  7. print(epoch,"| x.shape:",np.shape(xv),"| x[:3]:",xv[:3])
  8. print(epoch,"| y.shape:",np.shape(yv),"| y[:3]:",yv[:3])

代码开始定义了数据集的迭代次数,这个参数在训练模型中才会用到。

④模拟数据可视化

  1. #显示模拟数据点
  2. train_data = list(GenerateData())[0]
  3. plt.plot(train_data[0], train_data[1], 'ro', label='Original data')
  4. plt.legend()
  5. plt.show()

运行结果

  1. ...
  2. 17 |x.shape: (100,) |x[:3]: [-1. -0.97979796 -0.959596 ]
  3. 17 |y.shape: (100,) |y[:3]: [-2.0945473 -2.1236315 -1.6280223]
  4. 18 |x.shape: (100,) |x[:3]: [-1. -0.97979796 -0.959596 ]
  5. 18 |y.shape: (100,) |y[:3]: [-2.022675 -2.118289 -1.8735064]
  6. 19 |x.shape: (100,) |x[:3]: [-1. -0.97979796 -0.959596 ]
  7. 19 |y.shape: (100,) |y[:3]: [-2.0080116 -2.5169287 -1.6713679]

每行数据被|符号划分为3块区域,分别为:迭代次数、数据的形状、前三个元素的值。

可视化结果如下

改进:创建带有迭代值并支持乱序功能的模拟数据集 

优化如下:

①将数据集与 迭代功能绑定在一起,让代码变得更简洁。

②对数据集进行乱序排序,让生成的x数据无规则 。

通过对数据集的乱序,可以消除样本中无用的特征,从而大大提升模型的泛化能力。

注意:

在乱序操作部分使用的是sklearn.utils库中的shuffle()方法。要使用,首先需要安装,命令如下:

pip install sklearn

改进后全部代码如下: 

  1. import tensorflow as tf
  2. import numpy as np
  3. import matplotlib.pyplot as plt
  4. from sklearn.utils import shuffle
  5. tf.compat.v1.disable_v2_behavior()
  6. def GenerateData(training_epochs,batchsize=100):
  7. for i in range(training_epochs):
  8. train_X=np.linspace(-1,1,batchsize)
  9. train_Y=2*train_X+np.random.randn(*train_X.shape)*0.3
  10. yield shuffle(train_X,train_Y),i
  11. Xinput=tf.compat.v1.placeholder("float",(None))
  12. Yinput=tf.compat.v1.placeholder("float",(None))
  13. training_epochs=20
  14. with tf.compat.v1.Session() as sess:
  15. for (x,y),ii in GenerateData(training_epochs):
  16. xv,yv=sess.run([Xinput,Yinput],feed_dict={Xinput:x,Yinput:y})
  17. print(ii,"|x.shape:",np.shape(xv),"|x[:3]:",xv[:3])
  18. print(ii,"|y.shape:",np.shape(yv),"|y[:3]:",yv[:3])
  19. train_data=list(GenerateData(1))[0]
  20. plt.plot(train_data[0][0],train_data[0][1],'ro',label='Original data')
  21. plt.legend()
  22. plt.show()

可视化结果图片如下:

文章知识点与官方知识档案匹配,可进一步学习相关知识
OpenCV技能树OpenCV中的深度学习图像分类13293 人正在系统学习中
python学习/技术交流(请备注)
微信名片