深圳幻海软件技术有限公司 欢迎您!

YOLOv5/v7 更换骨干网络之 PP-LCNet

2023-02-28

论文地址:https://arxiv.org/abs/2109.15099代码地址:https://github.com/ngnquan/PP-LCNet我们提出了一种基于MKLDNN加速策略的轻量级CPU网络,名为PPLCNet,它提高了轻量级模型在多个任务上的性能。本文列出了在延迟几乎不变的情况



论文地址:https://arxiv.org/abs/2109.15099
代码地址:https://github.com/ngnquan/PP-LCNet

我们提出了一种基于MKLDNN加速策略的轻量级CPU网络,名为PP LCNet,它提高了轻量级模型在多个任务上的性能。本文列出了在延迟几乎不变的情况下可以提高网络准确性的技术。通过这些改进,PP LCNet的精度可以在相同的分类推理时间下大大超过以前的网络结构。如图1所示,它优于最先进的模型。对于计算机视觉的下游任务,它也表现得很好,例如对象检测、语义分割等。我们所有的实验都是基于PaddlePaddle1实现的。PaddleClas2提供代码和预训练模型。


PP-LCNet网路结构


将YOLOv5主干网络替换为PP-LCNet:
yolov5lPP-LC.yaml

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

#  PP-LCNet backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [16, 3, 2, 1]],              # 0-P1/2  ch_out, kernel, stride, padding
   [-1, 1, DepthSepConv, [32, 3, 1, False]],  # 1

   [-1, 1, DepthSepConv, [64, 3, 2, False]],  # 2-P2/4
   [-1, 1, DepthSepConv, [64, 3, 1, False]],  # 3

   [-1, 1, DepthSepConv, [128, 3, 2, False]], # 4-P3/8
   [-1, 1, DepthSepConv, [128, 3, 1, False]], # 5

   [-1, 1, DepthSepConv, [256, 3, 2, False]], # 6-P4/16
   [-1, 5, DepthSepConv, [256, 5, 1, False]], # 7

   [-1, 1, DepthSepConv, [512, 5, 2, True]],  # 8-P5/32
   [-1, 1, DepthSepConv, [512, 5, 1, True]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]], # 11
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 14

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 18 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 13], 1, Concat, [1]], # cat head P4
   [-1, 3, C3, [512, False]],  # 21 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 24 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52

在YOLOv5项目中添加方式:

common.py中加入以下代码:

class DepthSepConv(nn.Module):
    def __init__(self, inp, oup, dw_size, stride, use_se):
        super(DepthSepConv, self).__init__()
        self.stride = stride
        self.inp = inp
        self.oup = oup
        self.dw_size = dw_size
        self.dw_sp = nn.Sequential(
            nn.Conv2d(self.inp, self.inp, kernel_size=self.dw_size, stride=self.stride, padding=(dw_size - 1) // 2, groups=self.inp, bias=False),
            nn.BatchNorm2d(self.inp),
            nn.Hardswish(),

            SeBlock(self.inp, reduction=16) if use_se else nn.Sequential(),

            nn.Conv2d(self.inp, self.oup, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(self.oup),
            nn.Hardswish())

    def forward(self, x):
        y = self.dw_sp(x)
        return y
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

yolo.py中添加如下代码:


本人更多YOLOv5实战内容导航🍀🌟🚀

  1. 手把手带你调参Yolo v5 (v6.2)(推理)🌟强烈推荐

  2. 手把手带你调参Yolo v5 (v6.2)(训练)🚀

  3. 手把手带你调参Yolo v5 (v6.2)(验证)

  4. 如何快速使用自己的数据集训练Yolov5模型

  5. 手把手带你Yolov5 (v6.2)添加注意力机制(一)(并附上30多种顶会Attention原理图)🌟强烈推荐🍀新增8种

  6. 手把手带你Yolov5 (v6.2)添加注意力机制(二)(在C3模块中加入注意力机制)

  7. Yolov5如何更换激活函数?

  8. Yolov5如何更换BiFPN?

  9. Yolov5 (v6.2)数据增强方式解析

  10. Yolov5更换上采样方式( 最近邻 / 双线性 / 双立方 / 三线性 / 转置卷积)

  11. Yolov5如何更换EIOU / alpha IOU / SIoU?

  12. Yolov5更换主干网络之《旷视轻量化卷积神经网络ShuffleNetv2》

  13. YOLOv5应用轻量级通用上采样算子CARAFE

  14. 空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC🚀

  15. 用于低分辨率图像和小物体的模块SPD-Conv

  16. GSConv+Slim-neck 减轻模型的复杂度同时提升精度🍀

  17. 头部解耦 | 将YOLOX解耦头添加到YOLOv5 | 涨点杀器🍀

  18. Stand-Alone Self-Attention | 搭建纯注意力FPN+PAN结构🍀

  19. YOLOv5模型剪枝实战🚀

  20. YOLOv5知识蒸馏实战🚀

  21. YOLOv7知识蒸馏实战🚀

  22. 改进YOLOv5 | 引入密集连接卷积网络DenseNet思想 | 搭建密集连接模块🍀

  23. YOLOv5 框架引入 Google 轻量化网络 MobileNet V3🍀

  24. YOLOv5更换骨干网络之 EfficientNet-B0🍀


参考文献:

https://github.com/Gumpest/YOLOv5-Multibackbone-Compression

文章知识点与官方知识档案匹配,可进一步学习相关知识
Python入门技能树人工智能深度学习238067 人正在系统学习中
学姐带你玩AI
微信公众号
人工智能炼丹资料关注公众号领取!