查找算法及排序算法
- 常见的七种查找算法:
- 1. 基本查找
- 2. 二分查找
- 3. 插值查找
- 4. 斐波那契查找
- 5. 分块查找
- 6. 哈希查找
- 7. 树表查找
- 四种排序算法:
- 1. 冒泡排序
- 1.1 算法步骤
- 1.2 动图演示
- 1.3 代码示例
- 2. 选择排序
- 2.1 算法步骤
- 2.2 动图演示
- 3. 插入排序
- 3.1 算法步骤
- 3.2 动图演示
- 4. 快速排序
- 4.1 算法步骤
- 4.2 动图演示
常见的七种查找算法:
1. 基本查找
也叫做顺序查找
说明:顺序查找适合于存储结构为数组或者链表。
基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线的一端开始,顺序扫描,依次将遍历到的结点与要查找的值相比较,若相等则表示查找成功;若遍历结束仍没有找到相同的,表示查找失败。
示例代码:
public class A01_BasicSearchDemo1 {
public static void main(String[] args) {
//基本查找/顺序查找
//核心:
//从0索引开始挨个往后查找
//需求:定义一个方法利用基本查找,查询某个元素是否存在
//数据如下:{131, 127, 147, 81, 103, 23, 7, 79}
int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};
int number = 82;
System.out.println(basicSearch(arr, number));
}
//参数:
//一:数组
//二:要查找的元素
//返回值:
//元素是否存在
public static boolean basicSearch(int[] arr, int number){
//利用基本查找来查找number在数组中是否存在
for (int i = 0; i < arr.length; i++) {
if(arr[i] == number){
return true;
}
}
return false;
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
2. 二分查找
也叫做折半查找
说明:元素必须是有序的,从小到大,或者从大到小都是可以的。
如果是无序的,也可以先进行排序。但是排序之后,会改变原有数据的顺序,查找出来元素位置跟原来的元素可能是不一样的,所以排序之后再查找只能判断当前数据是否在容器当中,返回的索引无实际的意义。
基本思想:也称为是折半查找,属于有序查找算法。用给定值先与中间结点比较。比较完之后有三种情况:
-
相等
说明找到了
-
要查找的数据比中间节点小
说明要查找的数字在中间节点左边
-
要查找的数据比中间节点大
说明要查找的数字在中间节点右边
代码示例:
package com.itheima.search;
public class A02_BinarySearchDemo1 {
public static void main(String[] args) {
//二分查找/折半查找
//核心:
//每次排除一半的查找范围
//需求:定义一个方法利用二分查找,查询某个元素在数组中的索引
//数据如下:{7, 23, 79, 81, 103, 127, 131, 147}
int[] arr = {7, 23, 79, 81, 103, 127, 131, 147};
System.out.println(binarySearch(arr, 150));
}
public static int binarySearch(int[] arr, int number){
//1.定义两个变量记录要查找的范围
int min = 0;
int max = arr.length - 1;
//2.利用循环不断的去找要查找的数据
while(true){
if(min > max){
return -1;
}
//3.找到min和max的中间位置
int mid = (min + max) / 2;
//4.拿着mid指向的元素跟要查找的元素进行比较
if(arr[mid] > number){
//4.1 number在mid的左边
//min不变,max = mid - 1;
max = mid - 1;
}else if(arr[mid] < number){
//4.2 number在mid的右边
//max不变,min = mid + 1;
min = mid + 1;
}else{
//4.3 number跟mid指向的元素一样
//找到了
return mid;
}
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
3. 插值查找
在介绍插值查找之前,先考虑一个问题:
为什么二分查找算法一定要是折半,而不是折四分之一或者折更多呢?
其实就是因为方便,简单,但是如果我能在二分查找的基础上,让中间的mid点,尽可能靠近想要查找的元素,那不就能提高查找的效率了吗?
二分查找中查找点计算如下:
mid=(low+high)/2, 即mid=low+1/2*(high-low);
我们可以将查找的点改进为如下:
mid=low+(key-a[low])/(a[high]-a[low])*(high-low)
这样,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。
基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。
细节:对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。
代码跟二分查找类似,只要修改一下mid的计算方式即可。
4. 斐波那契查找
在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。
黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。
0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。
在数学中有一个非常有名的数学规律:斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….
(从第三个数开始,后边每一个数都是前两个数的和)。
然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。
基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。
斐波那契查找也是在二分查找的基础上进行了优化,优化中间点mid的计算方式即可
代码示例:
public class FeiBoSearchDemo {
public static int maxSize = 20;
public static void main(String[] args) {
int[] arr = {1, 8, 10, 89, 1000, 1234};
System.out.println(search(arr, 1234));
}
public static int[] getFeiBo() {
int[] arr = new int[maxSize];
arr[0] = 1;
arr[1] = 1;
for (int i = 2; i < maxSize; i++) {
arr[i] = arr[i - 1] + arr[i - 2];
}
return arr;
}
public static int search(int[] arr, int key) {
int low = 0;
int high = arr.length - 1;
//表示斐波那契数分割数的下标值
int index = 0;
int mid = 0;
//调用斐波那契数列
int[] f = getFeiBo();
//获取斐波那契分割数值的下标
while (high > (f[index] - 1)) {
index++;
}
//因为f[k]值可能大于a的长度,因此需要使用Arrays工具类,构造一个新法数组,并指向temp[],不足的部分会使用0补齐
int[] temp = Arrays.copyOf(arr, f[index]);
//实际需要使用arr数组的最后一个数来填充不足的部分
for (int i = high + 1; i < temp.length; i++) {
temp[i] = arr[high];
}
//使用while循环处理,找到key值
while (low <= high) {
mid = low + f[index - 1] - 1;
if (key < temp[mid]) {//向数组的前面部分进行查找
high = mid - 1;
/*
对k--进行理解
1.全部元素=前面的元素+后面的元素
2.f[k]=k[k-1]+f[k-2]
因为前面有k-1个元素没所以可以继续分为f[k-1]=f[k-2]+f[k-3]
即在f[k-1]的前面继续查找k--
即下次循环,mid=f[k-1-1]-1
*/
index--;
} else if (key > temp[mid]) {//向数组的后面的部分进行查找
low = mid + 1;
index -= 2;
} else {//找到了
//需要确定返回的是哪个下标
if (mid <= high) {
return mid;
} else {
return high;
}
}
}
return -1;
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
5. 分块查找
当数据表中的数据元素很多时,可以采用分块查找。
汲取了顺序查找和折半查找各自的优点,既有动态结构,又适于快速查找
分块查找适用于数据较多,但是数据不会发生变化的情况,如果需要一边添加一边查找,建议使用哈希查找
分块查找的过程:
- 需要把数据分成N多小块,块与块之间不能有数据重复的交集。
- 给每一块创建对象单独存储到数组当中
- 查找数据的时候,先在数组查,当前数据属于哪一块
- 再到这一块中顺序查找
代码示例:
package com.itheima.search;
public class A03_BlockSearchDemo {
public static void main(String[] args) {
/*
分块查找
核心思想:
块内无序,块间有序
实现步骤:
1.创建数组blockArr存放每一个块对象的信息
2.先查找blockArr确定要查找的数据属于哪一块
3.再单独遍历这一块数据即可
*/
int[] arr = {16, 5, 9, 12,21, 18,
32, 23, 37, 26, 45, 34,
50, 48, 61, 52, 73, 66};
//创建三个块的对象
Block b1 = new Block(21,0,5);
Block b2 = new Block(45,6,11);
Block b3 = new Block(73,12,17);
//定义数组用来管理三个块的对象(索引表)
Block[] blockArr = {b1,b2,b3};
//定义一个变量用来记录要查找的元素
int number = 37;
//调用方法,传递索引表,数组,要查找的元素
int index = getIndex(blockArr,arr,number);
//打印一下
System.out.println(index);
}
//利用分块查找的原理,查询number的索引
private static int getIndex(Block[] blockArr, int[] arr, int number) {
//1.确定number是在那一块当中
int indexBlock = findIndexBlock(blockArr, number);
if(indexBlock == -1){
//表示number不在数组当中
return -1;
}
//2.获取这一块的起始索引和结束索引 --- 30
// Block b1 = new Block(21,0,5); ---- 0
// Block b2 = new Block(45,6,11); ---- 1
// Block b3 = new Block(73,12,17); ---- 2
int startIndex = blockArr[indexBlock].getStartIndex();
int endIndex = blockArr[indexBlock].getEndIndex();
//3.遍历
for (int i = startIndex; i <= endIndex; i++) {
if(arr[i] == number){
return i;
}
}
return -1;
}
//定义一个方法,用来确定number在哪一块当中
public static int findIndexBlock(Block[] blockArr,int number){ //100
//从0索引开始遍历blockArr,如果number小于max,那么就表示number是在这一块当中的
for (int i = 0; i < blockArr.length; i++) {
if(number <= blockArr[i].getMax()){
return i;
}
}
return -1;
}
}
class Block{
private int max;//最大值
private int startIndex;//起始索引
private int endIndex;//结束索引
public Block() {
}
public Block(int max, int startIndex, int endIndex) {
this.max = max;
this.startIndex = startIndex;
this.endIndex = endIndex;
}
/**
* 获取
* @return max
*/
public int getMax() {
return max;
}
/**
* 设置
* @param max
*/
public void setMax(int max) {
this.max = max;
}
/**
* 获取
* @return startIndex
*/
public int getStartIndex() {
return startIndex;
}
/**
* 设置
* @param startIndex
*/
public void setStartIndex(int startIndex) {
this.startIndex = startIndex;
}
/**
* 获取
* @return endIndex
*/
public int getEndIndex() {
return endIndex;
}
/**
* 设置
* @param endIndex
*/
public void setEndIndex(int endIndex) {
this.endIndex = endIndex;
}
public String toString() {
return "Block{max = " + max + ", startIndex = " + startIndex + ", endIndex = " + endIndex + "}";
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
6. 哈希查找
哈希查找是分块查找的进阶版,适用于数据一边添加一边查找的情况。
一般是数组 + 链表的结合体或者是数组+链表 + 红黑树的结合体
在课程中,为了让大家方便理解,所以规定:
- 数组的0索引处存储1~100
- 数组的1索引处存储101~200
- 数组的2索引处存储201~300
- 以此类推
但是实际上,我们一般不会采取这种方式,因为这种方式容易导致一块区域添加的元素过多,导致效率偏低。
更多的是先计算出当前数据的哈希值,用哈希值跟数组的长度进行计算,计算出应存入的位置,再挂在数组的后面形成链表,如果挂的元素太多而且数组长度过长,我们也会把链表转化为红黑树,进一步提高效率。
7. 树表查找
本知识点涉及到数据结构:树。
基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。
二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree),具有下列性质的二叉树:
1)若任意节点左子树上所有的数据,均小于本身;
2)若任意节点右子树上所有的数据,均大于本身;
二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。
基于二叉查找树进行优化,进而可以得到其他的树表查找算法,如平衡树、红黑树等高效算法。
不管是二叉查找树,还是平衡二叉树,还是红黑树,查找的性能都比较高
四种排序算法:
1. 冒泡排序
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。
它重复的遍历过要排序的数列,一次比较相邻的两个元素,如果他们的顺序错误就把他们交换过来。
这个算法的名字由来是因为越大的元素会经由交换慢慢"浮"到最后面。
当然,大家可以按照从大到小的方式进行排列。
1.1 算法步骤
- 相邻的元素两两比较,大的放右边,小的放左边
- 第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推
- 如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以
1.2 动图演示
1.3 代码示例
public class A01_BubbleDemo {
public static void main(String[] args) {
/*
冒泡排序:
核心思想:
1,相邻的元素两两比较,大的放右边,小的放左边。
2,第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推。
3,如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以。
*/
//1.定义数组
int[] arr = {2, 4, 5, 3, 1};
//2.利用冒泡排序将数组中的数据变成 1 2 3 4 5
//外循环:表示我要执行多少轮。 如果有n个数据,那么执行n - 1 轮
for (int i = 0; i < arr.length - 1; i++) {
//内循环:每一轮中我如何比较数据并找到当前的最大值
//-1:为了防止索引越界
//-i:提高效率,每一轮执行的次数应该比上一轮少一次。
for (int j = 0; j < arr.length - 1 - i; j++) {
//i 依次表示数组中的每一个索引:0 1 2 3 4
if(arr[j] > arr[j + 1]){
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
printArr(arr);
}
private static void printArr(int[] arr) {
//3.遍历数组
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
2. 选择排序
2.1 算法步骤
- 从0索引开始,跟后面的元素一一比较
- 小的放前面,大的放后面
- 第一次循环结束后,最小的数据已经确定
- 第二次循环从1索引开始以此类推
- 第三轮循环从2索引开始以此类推
- 第四轮循环从3索引开始以此类推。
2.2 动图演示
public class A02_SelectionDemo {
public static void main(String[] args) {
/*
选择排序:
1,从0索引开始,跟后面的元素一一比较。
2,小的放前面,大的放后面。
3,第一次循环结束后,最小的数据已经确定。
4,第二次循环从1索引开始以此类推。
*/
//1.定义数组
int[] arr = {2, 4, 5, 3, 1};
//2.利用选择排序让数组变成 1 2 3 4 5
/* //第一轮:
//从0索引开始,跟后面的元素一一比较。
for (int i = 0 + 1; i < arr.length; i++) {
//拿着0索引跟后面的数据进行比较
if(arr[0] > arr[i]){
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
}
}*/
//最终代码:
//外循环:几轮
//i:表示这一轮中,我拿着哪个索引上的数据跟后面的数据进行比较并交换
for (int i = 0; i < arr.length -1; i++) {
//内循环:每一轮我要干什么事情?
//拿着i跟i后面的数据进行比较交换
for (int j = i + 1; j < arr.length; j++) {
if(arr[i] > arr[j]){
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
}
printArr(arr);
}
private static void printArr(int[] arr) {
//3.遍历数组
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
3. 插入排序
插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过创建有序序列和无序序列,然后再遍历无序序列得到里面每一个数字,把每一个数字插入到有序序列中正确的位置。
插入排序在插入的时候,有优化算法,在遍历有序序列找正确位置时,可以采取二分查找
3.1 算法步骤
将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。
遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。
N的范围:0~最大索引
3.2 动图演示
package com.itheima.mysort;
public class A03_InsertDemo {
public static void main(String[] args) {
/*
插入排序:
将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。
遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。
N的范围:0~最大索引
*/
int[] arr = {3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48};
//1.找到无序的哪一组数组是从哪个索引开始的。 2
int startIndex = -1;
for (int i = 0; i < arr.length; i++) {
if(arr[i] > arr[i + 1]){
startIndex = i + 1;
break;
}
}
//2.遍历从startIndex开始到最后一个元素,依次得到无序的哪一组数据中的每一个元素
for (int i = startIndex; i < arr.length; i++) {
//问题:如何把遍历到的数据,插入到前面有序的这一组当中
//记录当前要插入数据的索引
int j = i;
while(j > 0 && arr[j] < arr[j - 1]){
//交换位置
int temp = arr[j];
arr[j] = arr[j - 1];
arr[j - 1] = temp;
j--;
}
}
printArr(arr);
}
private static void printArr(int[] arr) {
//3.遍历数组
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
4. 快速排序
快速排序是由东尼·霍尔所发展的一种排序算法。
快速排序又是一种分而治之思想在排序算法上的典型应用。
快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!
它是处理大数据最快的排序算法之一了。
4.1 算法步骤
- 从数列中挑出一个元素,一般都是左边第一个数字,称为 “基准数”;
- 创建两个指针,一个从前往后走,一个从后往前走。
- 先执行后面的指针,找出第一个比基准数小的数字
- 再执行前面的指针,找出第一个比基准数大的数字
- 交换两个指针指向的数字
- 直到两个指针相遇
- 将基准数跟指针指向位置的数字交换位置,称之为:基准数归位。
- 第一轮结束之后,基准数左边的数字都是比基准数小的,基准数右边的数字都是比基准数大的。
- 把基准数左边看做一个序列,把基准数右边看做一个序列,按照刚刚的规则递归排序
4.2 动图演示
package com.itheima.mysort;
import java.util.Arrays;
public class A05_QuickSortDemo {
public static void main(String[] args) {
System.out.println(Integer.MAX_VALUE);
System.out.println(Integer.MIN_VALUE);
/*
快速排序:
第一轮:以0索引的数字为基准数,确定基准数在数组中正确的位置。
比基准数小的全部在左边,比基准数大的全部在右边。
后面以此类推。
*/
int[] arr = {1,1, 6, 2, 7, 9, 3, 4, 5, 1,10, 8};
//int[] arr = new int[1000000];
/* Random r = new Random();
for (int i = 0; i < arr.length; i++) {
arr[i] = r.nextInt();
}*/
long start = System.currentTimeMillis();
quickSort(arr, 0, arr.length - 1);
long end = System.currentTimeMillis();
System.out.println(end - start);//149
System.out.println(Arrays.toString(arr));
//课堂练习:
//我们可以利用相同的办法去测试一下,选择排序,冒泡排序以及插入排序运行的效率
//得到一个结论:快速排序真的非常快。
/* for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}*/
}
/*
* 参数一:我们要排序的数组
* 参数二:要排序数组的起始索引
* 参数三:要排序数组的结束索引
* */
public static void quickSort(int[] arr, int i, int j) {
//定义两个变量记录要查找的范围
int start = i;
int end = j;
if(start > end){
//递归的出口
return;
}
//记录基准数
int baseNumber = arr[i];
//利用循环找到要交换的数字
while(start != end){
//利用end,从后往前开始找,找比基准数小的数字
//int[] arr = {1, 6, 2, 7, 9, 3, 4, 5, 10, 8};
while(true){
if(end <= start || arr[end] < baseNumber){
break;
}
end--;
}
System.out.println(end);
//利用start,从前往后找,找比基准数大的数字
while(true){
if(end <= start || arr[start] > baseNumber){
break;
}
start++;
}
//把end和start指向的元素进行交换
int temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
}
//当start和end指向了同一个元素的时候,那么上面的循环就会结束
//表示已经找到了基准数在数组中应存入的位置
//基准数归位
//就是拿着这个范围中的第一个数字,跟start指向的元素进行交换
int temp = arr[i];
arr[i] = arr[start];
arr[start] = temp;
//确定6左边的范围,重复刚刚所做的事情
quickSort(arr,i,start - 1);
//确定6右边的范围,重复刚刚所做的事情
quickSort(arr,start + 1,j);
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
后记
👉👉💕💕美好的一天,到此结束,下次继续努力!欲知后续,请看下回分解,写作不易,感谢大家的支持!! 🌹🌹🌹