深圳幻海软件技术有限公司 欢迎您!

Pandas与SQL的超强结合,爆赞!

2023-02-28

人生苦短,我学Python!本文的所有演示数据,均是基于下方的四张表。下面这四张表大家应该不陌生,这就是网传50道经典MySQL面试题中使用到的几张原表。关于下方各表之间的关联关系,我就不给大家说明了,仔细观察字段名,应该就可以发现。简介pandas中的DataFrame是一个二维表格,数据库中的表

人生苦短,我学Python!

本文的所有演示数据,均是基于下方的四张表。下面这四张表大家应该不陌生,这就是网传50道经典MySQL面试题中使用到的几张原表。关于下方各表之间的关联关系,我就不给大家说明了,仔细观察字段名,应该就可以发现。

简介

pandas中的DataFrame是一个二维表格,数据库中的表也是一个二维表格,因此在pandas中使用sql语句就显得水到渠成,pandasql使用SQLite作为其操作数据库,同时Python自带SQLite模块,不需要安装,便可直接使用。

这里有一点需要注意的是:使用pandasql读取DataFrame中日期格式的列,默认会读取年月日、时分秒,因此我们要学会使用sqlite中的日期处理函数,方便我们转换日期格式,下方提供sqlite中常用函数大全,希望对你有帮助。

sqlite函数大全:http://suo.im/5DWraE

导入相关库:

import pandas as pd  
from pandasql import sqldf
  • 1.
  • 2.

声明全局变量的2种方式

  • 在使用之前,声明该全局变量;
  • 一次性声明好全局变量;

在使用之前,声明该全局变量

df1 = pd.read_excel("student.xlsx")
df2 = pd.read_excel("sc.xlsx")
df3 = pd.read_excel("course.xlsx")
df4 = pd.read_excel("teacher.xlsx")
global df1
global df2
global df3
global df4
query1 = "select * from df1 limit 5"
query2 = "select * from df2 limit 5"
query3 = "select * from df3"
query4 = "select * from df4"
sqldf(query1)
sqldf(query2)
sqldf(query3)
sqldf(query4)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.

部分结果如下:

一次性声明好全局变量

df1 = pd.read_excel("student.xlsx")  
df2 = pd.read_excel("sc.xlsx")  
df3 = pd.read_excel("course.xlsx")  
df4 = pd.read_excel("teacher.xlsx")  
pysqldf = lambda q: sqldf(q, globals())  
query1 = "select * from df1 limit 5"  
query2 = "select * from df2 limit 5"  
query3 = "select * from df3"  
query4 = "select * from df4"  
sqldf(query1)  
sqldf(query2)  
sqldf(query3)  
sqldf(query4)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.

部分结果如下:

写几个简单的SQL语句

查看sqlite的版本

student = pd.read_excel("student.xlsx")  
pysqldf = lambda q: sqldf(q, globals())  
query1 = """  
   select sqlite_version(*)  
"""  
pysqldf(query1)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

结果如下:

where筛选

student = pd.read_excel("student.xlsx")  
pysqldf = lambda q: sqldf(q, globals())  
query1 = """  
    select *    
    from student    
   where strftime('%Y-%m-%d',sage) = '1990-01-01'  
"""  
pysqldf(query1)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.

结果如下:

多表连接

student = pd.read_excel("student.xlsx")  
sc = pd.read_excel("sc.xlsx")  
pysqldf = lambda q: sqldf(q, globals())  
query2 = """  
   select *  
   from student s  
   join sc on s.sid = sc.sid  
"""  
pysqldf(query2)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.

部分结果如下:

分组聚合

student = pd.read_excel("student.xlsx")  
sc = pd.read_excel("sc.xlsx")  
pysqldf = lambda q: sqldf(q, globals())  
query2 = """  
   select s.sname as 姓名,sum(sc.score) as 总分  
   from student s  
   join sc on s.sid = sc.sid  
   group by s.sname  
"""  
pysqldf(query2)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.

结果如下:

union查询

student = pd.read_excel("student.xlsx")  
pysqldf = lambda q: sqldf(q, globals())  
query1 = """  
    select *    
    from student    
   where strftime('%Y-%m',sage) = '1990-01'  
   union  
    select *    
    from student    
   where strftime('%Y-%m',sage) = '1990-12'  
"""  
pysqldf(query1)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.

结果如下: