深圳幻海软件技术有限公司 欢迎您!

监控 Python 内存使用情况和代码执行时间

2023-02-28

我的代码的哪些部分运行时间最长、内存最多?我怎样才能找到需要改进的地方?在开发过程中,我很确定我们大多数人都会想知道这一点,在本文中总结了一些方法来监控Python代码的时间和内存使用情况。本文将介绍4种方法,前3种方法提供时间信息,第4个方法可以获得内存使用情况。time模块%%time魔法命令l

我的代码的哪些部分运行时间最长、内存最多?我怎样才能找到需要改进的地方?

在开发过程中,我很确定我们大多数人都会想知道这一点,在本文中总结了一些方法来监控 Python 代码的时间和内存使用情况。

本文将介绍4种方法,前3种方法提供时间信息,第4个方法可以获得内存使用情况。

  • time 模块
  • %%time 魔法命令
  • line_profiler
  • memory_profiler

time 模块

这是计算代码运行所需时间的最简单、最直接(但需要手动开发)的方法。他的逻辑也很简单:记录代码运行之前和之后的时间,计算时间之间的差异。这可以实现如下:

import time
 
 start_time = time.time()
 result = 5+2
 end_time = time.time()
 
 print('Time taken = {} sec'.format(end_time - start_time))
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.

下面的例子显示了for循环和列表推导式在时间上的差异:

import time
 
 # for loop vs. list comp
 list_comp_start_time = time.time()
 result = [i for i in range(0,1000000)]
 list_comp_end_time = time.time()
 print('Time taken for list comp = {} sec'.format(list_comp_end_time - list_comp_start_time))
 
 result=[]
 for_loop_start_time = time.time()
 for i in range(0,1000000):
     result.append(i)
 for_loop_end_time = time.time()
 print('Time taken for for-loop = {} sec'.format(for_loop_end_time - for_loop_start_time))
 
 list_comp_time = list_comp_end_time - list_comp_start_time
 for_loop_time = for_loop_end_time - for_loop_start_time
 print('Difference = {} %'.format((for_loop_time - list_comp_time)/list_comp_time * 100))
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.

我们都知道for会慢一些。

Time taken for list comp = 0.05843973159790039 sec
 Time taken for for-loop = 0.06774497032165527 sec
 Difference = 15.922795107582594 %
  • 1.
  • 2.
  • 3.

%%time 魔法命令

魔法命令是IPython内核中内置的方便命令,可以方便地执行特定的任务。一般情况下都实在jupyter notebook种使用。

在单元格的开头添加%%time ,单元格执行完成后,会输出单元格执行所花费的时间。

%%time
 def convert_cms(cm, unit='m'):
     '''
    Function to convert cm to m or feet
    '''
     if unit == 'm':
         return cm/100
     return cm/30.48
 
 convert_cms(1000)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.

结果如下:

CPU times: user 24 µs, sys: 1 µs, total: 25 µs
 Wall time: 28.1 µs
 
 Out[8]: 10.0
  • 1.
  • 2.
  • 3.
  • 4.

这里的CPU times是CPU处理代码所花费的实际时间,Wall time是事件经过的真实时间,在方法入口和方法出口之间的时间。

line_profiler

前两个方法只提供执行该方法所需的总时间。通过时间分析器我们可以获得函数中每一个代码的运行时间。

这里我们需要使用line_profiler包。使用pip install line_profiler。

import line_profiler
 
 def convert_cms(cm, unit='m'):
     '''
    Function to convert cm to m or feet
    '''
     if unit == 'm':
         return cm/100
     return cm/30.48
 
 # Load the profiler
 %load_ext line_profiler
 
 # Use the profiler's magic to call the method
 %lprun -f convert_cms convert_cms(1000, 'f')
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.

输出结果如下:

Timer unit: 1e-06 s
 
 Total time: 4e-06 s
 File: /var/folders/y_/ff7_m0c146ddrr_mctd4vpkh0000gn/T/ipykernel_22452/382784489.py
 Function: convert_cms at line 1
 
 Line #     Hits         Time Per Hit   % Time Line Contents
 ==============================================================
      1                                           def convert_cms(cm, unit='m'):
      2                                               '''
      3                                               Function to convert cm to m or feet
      4                                               '''
      5         1         2.0     2.0     50.0     if unit == 'm':
      6                                                   return cm/100
      7         1         2.0     2.0     50.0     return cm/30.48
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.

可以看到line_profiler提供了每行代码所花费时间的详细信息。

  • Line Contents :运行的代码
  • Hits:行被执行的次数
  • Time:所花费的总时间(即命中次数x每次命中次数)
  • Per Hit:一次执行花费的时间,也就是说 Time =  Hits X Per Hit
  • % Time:占总时间的比例

可以看到,每一行代码都详细的分析了时间,这对于我们分析时间相当的有帮助。

memory_profiler

与line_profiler类似,memory_profiler提供代码的逐行内存使用情况。

要安装它需要使用pip install memory_profiler。我们这里监视convert_cms_f函数的内存使用情况。

from conversions import convert_cms_f
 import memory_profiler
 
 %load_ext memory_profiler
 
 %mprun -f convert_cms_f convert_cms_f(1000, 'f')
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

convert_cms_f函数在单独的文件中定义,然后导入。结果如下:

Line #   Mem usage   Increment Occurrences   Line Contents
 =============================================================
      1     63.7 MiB     63.7 MiB           1   def convert_cms_f(cm, unit='m'):
      2                                             '''
      3                                             Function to convert cm to m or feet
      4                                             '''
      5     63.7 MiB     0.0 MiB           1       if unit == 'm':
      6                                                 return cm/100
      7     63.7 MiB     0.0 MiB           1       return cm/30.48
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.

memory_profiler 提供对每行代码内存使用情况的详细了解。

这里的1 MiB (MebiByte) 几乎等于 1MB。1 MiB  = 1.048576 1MB

但是memory_profiler 也有一些缺点:它通过查询操作系统内存,所以结果可能与 python 解释器略有不同,如果在会话中多次运行 %mprun,可能会注意到增量列报告所有代码行为 0.0 MiB。这是因为魔法命令的限制导致的。

虽然memory_profiler有一些问题,但是它就使我们能够清楚地了解内存使用情况,对于开发来说是一个非常好用的工具。

总结

虽然Python并不是一个以执行效率见长的语言,但是在某些特殊情况下这些命令对我们还是非常有帮助的。