深圳幻海软件技术有限公司 欢迎您!

聚类分析(文末送书)

2023-07-01

目录聚类分析是什么一、定义和数据类型聚类应用聚类分析方法的性能指标聚类分析中常用数据结构有数据矩阵和相异度矩阵聚类分析方法分类二、K-means聚类算法划分聚类方法对数据集进行聚类时包含三个要点K-Means算法流程:K-means聚类算法的特点三、k-medoids算法基本思想K-medoids算

目录

聚类分析是什么

一、 定义和数据类型

聚类应用

聚类分析方法的性能指标

聚类分析中常用数据结构有数据矩阵和相异度矩阵

聚类分析方法分类

二、K-means聚类算法

划分聚类方法对数据集进行聚类时包含三个要点

K-Means算法流程:

K-means聚类算法的特点

三、k-medoids算法

基本思想

K-medoids算法特点

四、送书活动

五、抽奖规则


聚类分析是什么

 聚类分析是一种寻找数据之间内在结构的技术,将数据对象的集合分组为由类似的对象组成的多个类的分析过程。聚类把全体数据实例组织成一些相似组,而这些相似组被称作簇。处于相同簇中的数据实例彼此相同,处于不同簇中的实例彼此不同。聚类技术通常又被称为无监督学习,与监督学习不同的是,在簇中那些表示数据类别的分类或者分组信息是没有的。

一、 定义和数据类型

聚类应用

  • 市场营销: 帮助营销人员帮他们发现顾客中独特的群组,然后利用他们的知识发展目标营销项目
  • 土地利用: 在土地观测数据库中发现相似的区域
  • 保险: 识别平均索赔额度较高的机动车辆保险客户群组
  • 城市规划: 通过房屋的类型、价值、地理位置识别相近的住房
  • 地震研究: 沿着大陆断层聚类地震的震中

聚类分析方法的性能指标

  • 可扩展性
  • 自适应性
  • 鲁棒性
  • 可解释性 

聚类分析中常用数据结构有数据矩阵和相异度矩阵

 

聚类分析方法分类

基于划分、基于分层、基于密度、基于网络、基于模型

二、K-means聚类算法

划分聚类方法对数据集进行聚类时包含三个要点

选定某种距离作为数据样本间的相似性度量
选择评价聚类性能的准则函数
选择某个初始分类,之后用迭代的方法得到聚类结果,使得评价聚类的准则函数取得最优值

标准测试函数:

 均值:

K-Means算法流程:

输入:包含n个对象的数据集聚类个数k,最小误差e
输出:满足方差最小标准的k个聚类
①从n个数据对象中随机选出k个对象作为初始聚类的中心
②将每个类簇中的平均值作为度量基准,重新分配数据库中的
数据对象
③计算每个类簇的平均值,更新平均值
④循环(2)(3),直到每个类簇不在发生变化或者平均误差小于e

K-means聚类算法的特点

优点
简单、快速
算法尝试找出使平方误差函数值最小的k个划分据集
对处理大数据集,该算法是相对可伸缩的和高效率的

缺点

不适合于发现非凸面形状的簇,或者大小差别很大的簇

要求用户必须事先给出要生成的簇的数目K

对于“噪声”和孤立点数据敏感

对初值敏感

三、k-medoids算法

基本思想

k-medoids算法是一种聚类算法,与k-means算法相似,但它选择的中心点是簇中实际的数据点,而不是像k-means那样选择簇中心点的均值。

其基本思想是,给定一个数据集和聚类数k,随机选择k个点作为初始中心点,然后迭代以下两个步骤直到收敛:

1. 对于每个数据点,计算其与各中心点的距离,并将其划分到距离最近的簇中。

2. 对于每个簇,选择一个代表点(即中心点)来替换原来的中心点,使得代表点到簇中其他点的距离之和最小。

这个过程是一种优化过程,每次迭代会使得簇内的样本距离代表点更近,而簇间的距离更远,最终达到收敛。

与k-means算法不同,k-medoids算法不是适用于高维数据集,因为在高维空间中,欧几里得距离的性质会失效,需要使用更加复杂的距离度量方式。

K-medoids算法特点

优点:
1. 鲁棒性强:K-medoids算法采用一组代表性点(medoids)代表聚类簇,因此在数据噪声较大或者存在离群点的情况下,比k-means更加鲁棒。
2. 可解释性好:由于medoids是实际存在于数据集中的点,所以聚类结果更容易被理解和解释。
3. 适用于非凸数据集:相比k-means算法只适用于凸数据集,K-medoids算法可以处理非凸数据集的聚类问题。

缺点:
1. 运算速度慢:由于K-medoids算法需要计算每个点到medoid的距离,因此计算复杂度较高,时间复杂度为O(K*N^2),其中K为聚类簇数,N为数据点数。
2. 对初始值敏感:K-medoids算法的聚类结果取决于初始medoid的选择,因此需要多次随机初始化来获得更好的聚类结果。
3. 不适用于大数据分析:由于计算复杂度较高,K-medoids算法不适合处理大数据集。

四、送书活动

 618,清华社 IT BOOK 多得图书活动开始啦!活动时间为 2023 年 6 月 7 日至 6 月 18 日,清华
社为您精选多款高分好书,涵盖了 C++、Java、Python、前端、后端、数据库、算法与机器学习等多
个 IT 开发领域,适合不同层次的读者。全场 5 折,扫码领券更有优惠哦!快来京东点击链接 IT BOOK
多得(或扫描京东二维码)查看详情吧!

详情了解:《Python从入门到精通(微课精编版)(软件开发视频大讲堂)》(前沿科技)【摘要 书评 试读】- 京东图书

五、抽奖规则

   活动时间: 截止到2023-06-18 12: 00
   参与方式: 点赞、收藏本文章,并评论
   抽奖时间: 2023.06.18
   公布时间: 2023.06.20
   通知方式: 私信和动态通知(一共50本书)

获奖名单:

i阿极

不是笨小孩i.

Ja_小浩

文章知识点与官方知识档案匹配,可进一步学习相关知识
Python入门技能树人工智能机器学习工具包Scikit-learn310926 人正在系统学习中
码银学编程
微信公众号
交流学习,合作共赢