【建模算法】基于遗传算法求解TSP问题(Python实现)
TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了基于遗传算法求解TSP问题的Python实现。
一、问题描述
本案例以31个城市为例,假定31个城市的位置坐标如表1所列。寻找出一条最短的遍历31个城市的路径。
城市编号 | X坐标 | Y坐标 | 城市编号 | X坐标 | Y坐标 |
---|---|---|---|---|---|
1 | 1.304 | 2.312 | 17 | 3.918 | 2.179 |
2 | 3.639 | 1.315 | 18 | 4.061 | 2.37 |
3 | 4.177 | 2.244 | 19 | 3.78 | 2.212 |
4 | 3.712 | 1.399 | 20 | 3.676 | 2.578 |
5 | 3.488 | 1.535 | 21 | 4.029 | 2.838 |
6 | 3.326 | 1.556 | 22 | 4.263 | 2.931 |
7 | 3.238 | 1.229 | 23 | 3.429 | 1.908 |
8 | 4.196 | 1.044 | 24 | 3.507 | 2.376 |
9 | 4.312 | 0.79 | 25 | 3.394 | 2.643 |
10 | 4.386 | 0.57 | 26 | 3.439 | 3.201 |
11 | 3.007 | 1.97 | 27 | 2.935 | 3.24 |
12 | 2.562 | 1.756 | 28 | 3.14 | 3.55 |
13 | 2.788 | 1.491 | 29 | 2.545 | 2.357 |
14 | 2.381 | 1.676 | 30 | 2.778 | 2.826 |
15 | 1.332 | 0.695 | 31 | 2.37 | 2.975 |
16 | 3.715 | 1.678 |
二、解题思路及步骤
1.遗传算法步骤:
第一步:初始化 t←0进化代数计数器;T是最大进化代数(也可以没有);随机生成M个个体作为初始群体P(t);
第二步:个体评价 计算P(t)中各个个体的适应度;
第三步:选择运算 将选择算子作用于群体;
第四步:交叉运算 将交叉算子作用于群体;
第五步:变异运算 将变异算子作用于群体,并通过以上运算得到下一代群体P(t + 1);
第六步:终止条件判断 t≦T:t← t+1 转到步骤2;t>T:终止 输出解。
2.遗传算法求解的一般过程:
1)确定决策变量及各种约束条件,即个体的表现型X和问题的解空间;
2)建立优化模型 (目标函数最大OR 最小) 数学描述形式 量化方法;
3)染色体编码方法;
4)解码方法;
5)个体适应度的量化评价方法 F(x)
6)设计遗传算子;
7)确定有关运行参数。
3.方法实现
编码方式
应用于TSP问题,选用整数编码,每个整数代表一个城市,一整条路径就是整个染色体编码;如此显式的编码,可以不用解码;
population = []
# 初始化种群
index = [i for i in range(w)]
for i in range(count):
x = index.copy()
random.shuffle(x)
gailiang(x)
population.append(x)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
初始种群
随机生成初始种群,并计算这个初始种群的个体适应度。初始化种群时,采用改良版本,为了初始化一个较好的种群,如果随即交换两个城市的位置,如果总距离减小,那么就更新这个染色体。
# 初始种群的改良
def gailiang(x):
distance = get_total_distance(x)
gailiang_num = 0
while gailiang_num < gailiang_N:
while True:
a = random.randint(0, len(x) - 1)
b = random.randint(0, len(x) - 1)
if a != b:
break
new_x = x.copy()
temp_a = new_x[a]
new_x[a] = new_x[b]
new_x[b] = temp_a
if get_total_distance(new_x) < distance:
x = new_x.copy()
gailiang_num += 1
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
选择算子
选择总距离作为适应度函数,距离越小适应度越高,(存活率与总距离的倒数成正比)
# 适应度
def get_total_distance(x):
dista = 0
for i in range(len(x)):
if i == len(x) - 1:
dista += distance[x[i]][x[0]]
else:
dista += distance[x[i]][x[i + 1]]
return dista
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
交叉算子
1 部分映射交叉
选择交换部分,交换父代个体基因产生子代,然后建立映射表,根据映射表来消除基因冲突。
2 顺序交叉
在父代样本1中选择交换部分,根据父代1的交叉部分先生成子代1的部分基因片段,然后将父代2中未被选中的基因按顺序复制到子代1的空余部分;然后根据父代2选择交叉部分生成子代2,并将父代1中未选择的部分复制到子代2的空余;
3 基于位置的交叉
在父代1选择时随机选择需要交换的基因,根据交叉部分生成子代1;将父代2中未被选择到的基因复制到子代1中;然后根据父代2随机选择交叉部分生成子代2,并将父代1中未选择的部分复制到子代2的空余;
# 交叉繁殖
def crossover(parents):
target_count = count - len(parents)
children = []
while len(children) < target_count:
while True:
male_index = random.randint(0, len(parents)-1)
female_index = random.randint(0, len(parents)-1)
if male_index != female_index:
break
male = parents[male_index]
female = parents[female_index]
left = random.randint(0, len(male) - 2)
right = random.randint(left, len(male) - 1)
gen_male = male[left:right]
gen_female = female[left:right]
child_a = []
child_b = []
len_ca = 0
for g in male:
if len_ca == left:
child_a.extend(gen_female)
len_ca += len(gen_female)
if g not in gen_female:
child_a.append(g)
len_ca += 1
len_cb = 0
for g in female:
if len_cb == left:
child_b.extend(gen_male)
len_cb += len(gen_male)
if g not in gen_male:
child_b.append(g)
len_cb += 1
children.append(child_a)
children.append(child_b)
return children
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
变异算子
根据变异算子的概率,变异时随机选择两个不同的位置的基因进行交换。也可以采用三点变异法,随机生成abc三点,将ac基因片段与bc做交换。
# 变异操作
def mutation(children):
for i in range(len(children)):
if random.random() < mutation_rate:
while True:
u = random.randint(0, len(children[i]) - 1)
v = random.randint(0, len(children[i]) - 1)
if u != v:
break
temp_a = children[i][u]
children[i][u] = children[i][v]
children[i][v] = temp_a
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
更新种群
采用杰出父代+子代的方式来更新种群。
while i < iter_time:
# 自然选择
parents = nature_select(population)
# 繁殖
children = crossover(parents)
# 变异
mutation(children)
# 更新
population = parents + children
result_cur_best, dist_cur_best = get_result(population)
distance_list.append(dist_cur_best)
i = i + 1
print(result_cur_best)
print(dist_cur_best)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
我在求解时采用了在初始种群中进行改良的方法,收敛速度相对较快,求解结果比较满意。
三、求解结果
距离和城市序列:
TSP图和Loss图:
四、实现代码
#遗传算法求解TSP问题完整代码:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
import math
import random
# 处理数据
coord = []
with open("data.txt", "r") as lines:
lines = lines.readlines()
for line in lines:
xy = line.split()
coord.append(xy)
coord = np.array(coord)
w, h = coord.shape
coordinates = np.zeros((w, h), float)
for i in range(w):
for j in range(h):
coordinates[i, j] = float(coord[i, j])
# print(coordinates)
# 得到距离矩阵
distance = np.zeros((w, w))
for i in range(w):
for j in range(w):
distance[i, j] = distance[j, i] = np.linalg.norm(coordinates[i] - coordinates[j])
# 种群数
count = 300
# 进化次数
iter_time = 1000
# 最优选择概率
retain_rate = 0.3 # 适应度前30%可以活下来
# 弱者生存概率
random_select_rate = 0.5
# 变异
mutation_rate = 0.1
# 改良
gailiang_N = 3000
# 适应度
def get_total_distance(x):
dista = 0
for i in range(len(x)):
if i == len(x) - 1:
dista += distance[x[i]][x[0]]
else:
dista += distance[x[i]][x[i + 1]]
return dista
# 初始种群的改良
def gailiang(x):
distance = get_total_distance(x)
gailiang_num = 0
while gailiang_num < gailiang_N:
while True:
a = random.randint(0, len(x) - 1)
b = random.randint(0, len(x) - 1)
if a != b:
break
new_x = x.copy()
temp_a = new_x[a]
new_x[a] = new_x[b]
new_x[b] = temp_a
if get_total_distance(new_x) < distance:
x = new_x.copy()
gailiang_num += 1
# 自然选择
def nature_select(population):
grad = [[x, get_total_distance(x)] for x in population]
grad = [x[0] for x in sorted(grad, key=lambda x: x[1])]
# 强者
retain_length = int(retain_rate * len(grad))
parents = grad[: retain_length]
# 生存下来的弱者
for ruozhe in grad[retain_length:]:
if random.random() < random_select_rate:
parents.append(ruozhe)
return parents
# 交叉繁殖
def crossover(parents):
target_count = count - len(parents)
children = []
while len(children) < target_count:
while True:
male_index = random.randint(0, len(parents)-1)
female_index = random.randint(0, len(parents)-1)
if male_index != female_index:
break
male = parents[male_index]
female = parents[female_index]
left = random.randint(0, len(male) - 2)
right = random.randint(left, len(male) - 1)
gen_male = male[left:right]
gen_female = female[left:right]
child_a = []
child_b = []
len_ca = 0
for g in male:
if len_ca == left:
child_a.extend(gen_female)
len_ca += len(gen_female)
if g not in gen_female:
child_a.append(g)
len_ca += 1
len_cb = 0
for g in female:
if len_cb == left:
child_b.extend(gen_male)
len_cb += len(gen_male)
if g not in gen_male:
child_b.append(g)
len_cb += 1
children.append(child_a)
children.append(child_b)
return children
# 变异操作
def mutation(children):
for i in range(len(children)):
if random.random() < mutation_rate:
while True:
u = random.randint(0, len(children[i]) - 1)
v = random.randint(0, len(children[i]) - 1)
if u != v:
break
temp_a = children[i][u]
children[i][u] = children[i][v]
children[i][v] = temp_a
def get_result(population):
grad = [[x, get_total_distance(x)] for x in population]
grad = sorted(grad, key=lambda x: x[1])
return grad[0][0], grad[0][1]
population = []
# 初始化种群
index = [i for i in range(w)]
for i in range(count):
x = index.copy()
random.shuffle(x)
gailiang(x)
population.append(x)
distance_list = []
result_cur_best, dist_cur_best = get_result(population)
distance_list.append(dist_cur_best)
i = 0
while i < iter_time:
# 自然选择
parents = nature_select(population)
# 繁殖
children = crossover(parents)
# 变异
mutation(children)
# 更新
population = parents + children
result_cur_best, dist_cur_best = get_result(population)
distance_list.append(dist_cur_best)
i = i + 1
print(result_cur_best)
print(dist_cur_best)
for i in range(len(result_cur_best)):
result_cur_best[i] += 1
result_path = result_cur_best
result_path.append(result_path[0])
print(result_path)
# 画图
X = []
Y = []
for index in result_path:
X.append(coordinates[index-1, 0])
Y.append(coordinates[index-1, 1])
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False
plt.figure(1)
plt.plot(X, Y, '-o')
for i in range(len(X)):
plt.text(X[i] + 0.05, Y[i] + 0.05, str(result_path[i]), color='red')
plt.xlabel('横坐标')
plt.ylabel('纵坐标')
plt.title('轨迹图')
plt.figure(2)
plt.plot(np.array(distance_list))
plt.title('优化过程')
plt.ylabel('最优值')
plt.xlabel('代数({}->{})'.format(0, iter_time))
plt.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224