深圳幻海软件技术有限公司 欢迎您!

【建模算法】基于遗传算法求解TSP问题(Python实现)

2023-04-26

【建模算法】基于遗传算法求解TSP问题(Python实现)TSP(travelingsalesmanproblem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了基于遗传算法求解TSP问题的Pyth

【建模算法】基于遗传算法求解TSP问题(Python实现)

TSP (traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。本文探讨了基于遗传算法求解TSP问题的Python实现。

一、问题描述

​ 本案例以31个城市为例,假定31个城市的位置坐标如表1所列。寻找出一条最短的遍历31个城市的路径。

城市编号X坐标Y坐标城市编号X坐标Y坐标
11.3042.312173.9182.179
23.6391.315184.0612.37
34.1772.244193.782.212
43.7121.399203.6762.578
53.4881.535214.0292.838
63.3261.556224.2632.931
73.2381.229233.4291.908
84.1961.044243.5072.376
94.3120.79253.3942.643
104.3860.57263.4393.201
113.0071.97272.9353.24
122.5621.756283.143.55
132.7881.491292.5452.357
142.3811.676302.7782.826
151.3320.695312.372.975
163.7151.678

二、解题思路及步骤

1.遗传算法步骤:

第一步:初始化 t←0进化代数计数器;T是最大进化代数(也可以没有);随机生成M个个体作为初始群体P(t);

第二步:个体评价 计算P(t)中各个个体的适应度;

第三步:选择运算 将选择算子作用于群体;

第四步:交叉运算 将交叉算子作用于群体;

第五步:变异运算 将变异算子作用于群体,并通过以上运算得到下一代群体P(t + 1);

第六步:终止条件判断 t≦T:t← t+1 转到步骤2;t>T:终止 输出解。

2.遗传算法求解的一般过程:

1)确定决策变量及各种约束条件,即个体的表现型X和问题的解空间;

2)建立优化模型 (目标函数最大OR 最小) 数学描述形式 量化方法;

3)染色体编码方法;

4)解码方法;

5)个体适应度的量化评价方法 F(x)

6)设计遗传算子;

7)确定有关运行参数。

3.方法实现

编码方式

应用于TSP问题,选用整数编码,每个整数代表一个城市,一整条路径就是整个染色体编码;如此显式的编码,可以不用解码;

population = []

# 初始化种群

index = [i for i in range(w)]
for i in range(count):
    x = index.copy()
    random.shuffle(x)
    gailiang(x)
    population.append(x)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

初始种群

随机生成初始种群,并计算这个初始种群的个体适应度。初始化种群时,采用改良版本,为了初始化一个较好的种群,如果随即交换两个城市的位置,如果总距离减小,那么就更新这个染色体。

# 初始种群的改良
def gailiang(x):
    distance = get_total_distance(x)
    gailiang_num = 0
    while gailiang_num < gailiang_N:
        while True:
            a = random.randint(0, len(x) - 1)
            b = random.randint(0, len(x) - 1)
            if a != b:
                break
        new_x = x.copy()
        temp_a = new_x[a]
        new_x[a] = new_x[b]
        new_x[b] = temp_a
        if get_total_distance(new_x) < distance:
            x = new_x.copy()
        gailiang_num += 1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

选择算子

选择总距离作为适应度函数,距离越小适应度越高,(存活率与总距离的倒数成正比)

# 适应度
def get_total_distance(x):
    dista = 0
    for i in range(len(x)):
        if i == len(x) - 1:
            dista += distance[x[i]][x[0]]
        else:
            dista += distance[x[i]][x[i + 1]]
    return dista
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

交叉算子

1 部分映射交叉

选择交换部分,交换父代个体基因产生子代,然后建立映射表,根据映射表来消除基因冲突。

2 顺序交叉

在父代样本1中选择交换部分,根据父代1的交叉部分先生成子代1的部分基因片段,然后将父代2中未被选中的基因按顺序复制到子代1的空余部分;然后根据父代2选择交叉部分生成子代2,并将父代1中未选择的部分复制到子代2的空余;

3 基于位置的交叉

在父代1选择时随机选择需要交换的基因,根据交叉部分生成子代1;将父代2中未被选择到的基因复制到子代1中;然后根据父代2随机选择交叉部分生成子代2,并将父代1中未选择的部分复制到子代2的空余;

# 交叉繁殖
def crossover(parents):
    target_count = count - len(parents)
    children = []
    while len(children) < target_count:
        while True:
            male_index = random.randint(0, len(parents)-1)
            female_index = random.randint(0, len(parents)-1)
            if male_index != female_index:
                break
        male = parents[male_index]
        female = parents[female_index]
        left = random.randint(0, len(male) - 2)
        right = random.randint(left, len(male) - 1)
        gen_male = male[left:right]
        gen_female = female[left:right]
        child_a = []
        child_b = []

        len_ca = 0
        for g in male:
            if len_ca == left:
                child_a.extend(gen_female)
                len_ca += len(gen_female)
            if g not in gen_female:
                child_a.append(g)
                len_ca += 1

        len_cb = 0
        for g in female:
            if len_cb == left:
                child_b.extend(gen_male)
                len_cb += len(gen_male)
            if g not in gen_male:
                child_b.append(g)
                len_cb += 1

        children.append(child_a)
        children.append(child_b)
    return children
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

变异算子

根据变异算子的概率,变异时随机选择两个不同的位置的基因进行交换。也可以采用三点变异法,随机生成abc三点,将ac基因片段与bc做交换。

# 变异操作
def mutation(children):
    for i in range(len(children)):
        if random.random() < mutation_rate:
            while True:
                u = random.randint(0, len(children[i]) - 1)
                v = random.randint(0, len(children[i]) - 1)
                if u != v:
                    break
            temp_a = children[i][u]
            children[i][u] = children[i][v]
            children[i][v] = temp_a
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

更新种群

采用杰出父代+子代的方式来更新种群。

while i < iter_time:
    # 自然选择
    parents = nature_select(population)

    # 繁殖
    children = crossover(parents)

    # 变异
    mutation(children)

    # 更新
    population = parents + children

    result_cur_best, dist_cur_best = get_result(population)
    distance_list.append(dist_cur_best)
    i = i + 1
    print(result_cur_best)
    print(dist_cur_best)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

我在求解时采用了在初始种群中进行改良的方法,收敛速度相对较快,求解结果比较满意。

三、求解结果

距离和城市序列:

TSP图和Loss图:


四、实现代码

#遗传算法求解TSP问题完整代码:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
import math
import random

# 处理数据

coord = []
with open("data.txt", "r") as lines:
    lines = lines.readlines()
for line in lines:
    xy = line.split()
    coord.append(xy)

coord = np.array(coord)
w, h = coord.shape
coordinates = np.zeros((w, h), float)
for i in range(w):
    for j in range(h):
        coordinates[i, j] = float(coord[i, j])

# print(coordinates)

# 得到距离矩阵

distance = np.zeros((w, w))
for i in range(w):
    for j in range(w):
        distance[i, j] = distance[j, i] = np.linalg.norm(coordinates[i] - coordinates[j])

# 种群数
count = 300

# 进化次数
iter_time = 1000

# 最优选择概率
retain_rate = 0.3  # 适应度前30%可以活下来

# 弱者生存概率
random_select_rate = 0.5

# 变异
mutation_rate = 0.1

# 改良
gailiang_N = 3000


# 适应度
def get_total_distance(x):
    dista = 0
    for i in range(len(x)):
        if i == len(x) - 1:
            dista += distance[x[i]][x[0]]
        else:
            dista += distance[x[i]][x[i + 1]]
    return dista

# 初始种群的改良
def gailiang(x):
    distance = get_total_distance(x)
    gailiang_num = 0
    while gailiang_num < gailiang_N:
        while True:
            a = random.randint(0, len(x) - 1)
            b = random.randint(0, len(x) - 1)
            if a != b:
                break
        new_x = x.copy()
        temp_a = new_x[a]
        new_x[a] = new_x[b]
        new_x[b] = temp_a
        if get_total_distance(new_x) < distance:
            x = new_x.copy()
        gailiang_num += 1


# 自然选择

def nature_select(population):
    grad = [[x, get_total_distance(x)] for x in population]
    grad = [x[0] for x in sorted(grad, key=lambda x: x[1])]
    # 强者
    retain_length = int(retain_rate * len(grad))
    parents = grad[: retain_length]
    # 生存下来的弱者
    for ruozhe in grad[retain_length:]:
        if random.random() < random_select_rate:
            parents.append(ruozhe)
    return parents


# 交叉繁殖
def crossover(parents):
    target_count = count - len(parents)
    children = []
    while len(children) < target_count:
        while True:
            male_index = random.randint(0, len(parents)-1)
            female_index = random.randint(0, len(parents)-1)
            if male_index != female_index:
                break
        male = parents[male_index]
        female = parents[female_index]
        left = random.randint(0, len(male) - 2)
        right = random.randint(left, len(male) - 1)
        gen_male = male[left:right]
        gen_female = female[left:right]
        child_a = []
        child_b = []

        len_ca = 0
        for g in male:
            if len_ca == left:
                child_a.extend(gen_female)
                len_ca += len(gen_female)
            if g not in gen_female:
                child_a.append(g)
                len_ca += 1

        len_cb = 0
        for g in female:
            if len_cb == left:
                child_b.extend(gen_male)
                len_cb += len(gen_male)
            if g not in gen_male:
                child_b.append(g)
                len_cb += 1

        children.append(child_a)
        children.append(child_b)
    return children


# 变异操作
def mutation(children):
    for i in range(len(children)):
        if random.random() < mutation_rate:
            while True:
                u = random.randint(0, len(children[i]) - 1)
                v = random.randint(0, len(children[i]) - 1)
                if u != v:
                    break
            temp_a = children[i][u]
            children[i][u] = children[i][v]
            children[i][v] = temp_a


def get_result(population):
    grad = [[x, get_total_distance(x)] for x in population]
    grad = sorted(grad, key=lambda x: x[1])
    return grad[0][0], grad[0][1]


population = []
# 初始化种群
index = [i for i in range(w)]
for i in range(count):
    x = index.copy()
    random.shuffle(x)
    gailiang(x)
    population.append(x)

distance_list = []
result_cur_best, dist_cur_best = get_result(population)
distance_list.append(dist_cur_best)

i = 0
while i < iter_time:
    # 自然选择
    parents = nature_select(population)

    # 繁殖
    children = crossover(parents)

    # 变异
    mutation(children)

    # 更新
    population = parents + children

    result_cur_best, dist_cur_best = get_result(population)
    distance_list.append(dist_cur_best)
    i = i + 1
    print(result_cur_best)
    print(dist_cur_best)


for i in range(len(result_cur_best)):
    result_cur_best[i] += 1

result_path = result_cur_best
result_path.append(result_path[0])

print(result_path)

# 画图

X = []
Y = []
for index in result_path:
    X.append(coordinates[index-1, 0])
    Y.append(coordinates[index-1, 1])

plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False
plt.figure(1)
plt.plot(X, Y, '-o')
for i in range(len(X)):
    plt.text(X[i] + 0.05, Y[i] + 0.05, str(result_path[i]), color='red')
plt.xlabel('横坐标')
plt.ylabel('纵坐标')
plt.title('轨迹图')

plt.figure(2)
plt.plot(np.array(distance_list))
plt.title('优化过程')
plt.ylabel('最优值')
plt.xlabel('代数({}->{})'.format(0, iter_time))
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览45066 人正在系统学习中