概述
TreeMap是Map家族中的一员,也是用来存放key-value键值对的。平时在工作中使用的可能并不多,它最大的特点是遍历时是有顺序的,根据key的排序规则来,那么它具体是如何使用,又是怎么实现的呢?本文基于jdk8做一个讲解。
TreeMap介绍
TreeMap是一个基于key有序的key value散列表。
- map根据其键的自然顺序排序,或者根据map创建时提供的Comparator排序
- 不是线程安全的
- key 不可以存入null
- 底层是基于红黑树实现的
以上是TreeMap的类结构图:
- 实现了NavigableMap接口,NavigableMap又实现了Map接口,提供了导航相关的方法。
- 继承了AbstractMap,该方法实现Map操作的骨干逻辑。
- 实现了Cloneable接口,标记该类支持clone方法复制
- 实现了Serializable接口,标记该类支持序列化
构造方法
- TreeMap()
说明:使用键的自然排序构造一个新的空树映射。
- TreeMap(Comparator<? super K> comparator)
说明:构造一个新的空树映射,根据给定的比较器排序。
- TreeMap(Map<? extends K,? extends V> m)
说明:构造一个新的树映射,包含与给定映射相同的映射,按照键的自然顺序排序。
- TreeMap(SortedMap<K,? extends V> m)
说明:构造一个新的树映射,包含相同的映射,并使用与指定排序映射相同的顺序。
关键方法
这边主要讲解下NavigableMap和SortedMap提供的一些方法,Map相关的方法大家应该都很熟悉了。
SortedMap接口:
- Comparator<? super K> comparator()
返回用于排序此映射中的键的比较器,如果此映射使用其键的自然排序,则返回null。
- Set<Map.Entry<K,V>> entrySet()
返回此映射中包含的映射的Set视图。
- K firstKey()
返回当前映射中的第一个(最低)键。
- K lastKey()
返回当前映射中的最后(最高)键。
NavigableMap接口:
- Map.Entry<K,V> ceilingEntry(K key)
返回与大于或等于给定键的最小键相关联的键值映射,如果没有这样的键则返回null。
- K ceilingKey(K key)
返回大于或等于给定键的最小键,如果没有这样的键,则返回null。
- NavigableMap<K,V> descendingMap()
返回此映射中包含的映射的倒序视图。
- Map.Entry<K,V> firstEntry()
返回与该映射中最小的键关联的键值映射,如果映射为空,则返回null。
- Map.Entry<K,V> floorEntry(K key)
返回与小于或等于给定键的最大键相关联的键值映射,如果没有这样的键则返回null。
- SortedMap<K,V> headMap(K toKey)
返回该映射中键严格小于toKey的部分的视图。
- Map.Entry<K,V> higherEntry(K key)
返回与严格大于给定键的最小键关联的键值映射,如果没有这样的键,则返回null。
- Map.Entry<K,V> lastEntry()
返回与此映射中最大键关联的键值映射,如果映射为空,则返回null。
- Map.Entry<K,V> lowerEntry(K key)
返回与严格小于给定键的最大键关联的键值映射,如果没有这样的键,则返回null。
- Map.Entry<K,V> pollFirstEntry()
删除并返回与该映射中最小的键关联的键值映射,如果映射为空,则返回null。
- Map.Entry<K,V> pollLastEntry()
删除并返回与此映射中最大键关联的键值映射,如果映射为空,则返回null。
- SortedMap<K,V> subMap(K fromKey, K toKey)
返回该映射中键范围从fromKey(包含)到toKey(独占)的部分的视图。
- SortedMap<K,V> tailMap(K fromKey)
返回该映射中键大于或等于fromKey的部分的视图。
使用案例
- 验证顺序性
- @Test
- public void test1() {
- Map<Integer, String> treeMap = new TreeMap<>();
- treeMap.put(16, "a");
- treeMap.put(1, "b");
- treeMap.put(4, "c");
- treeMap.put(3, "d");
- treeMap.put(8, "e");
- // 遍历
- System.out.println("默认排序:");
- treeMap.forEach((key, value) -> {
- System.out.println("key: " + key + ", value: " + value);
- });
-
- // 构造方法传入比较器
- Map<Integer, String> tree2Map = new TreeMap<>((o1, o2) -> o2 - o1);
- tree2Map.put(16, "a");
- tree2Map.put(1, "b");
- tree2Map.put(4, "c");
- tree2Map.put(3, "d");
- tree2Map.put(8, "e");
- // 遍历
- System.out.println("倒序排序:");
- tree2Map.forEach((key, value) -> {
- System.out.println("key: " + key + ", value: " + value);
- });
- }
运行结果:
- 验证不能存储null
- @Test
- public void test2() {
- Map<Integer, String> treeMap = new TreeMap<>();
- treeMap.put(null, "a");
- }
运行结果:
- 验证NavigableMap相关方法
- @Test
- public void test3() {
- NavigableMap<Integer, String> treeMap = new TreeMap<>();
- treeMap.put(16, "a");
- treeMap.put(1, "b");
- treeMap.put(4, "c");
- treeMap.put(3, "d");
- treeMap.put(8, "e");
-
- // 获取大于等于5的key
- Integer ceilingKey = treeMap.ceilingKey(5);
- System.out.println("ceilingKey 5 is " + ceilingKey);
-
- // 获取最大的key
- Integer lastKey = treeMap.lastKey();
- System.out.println("lastKey is " + lastKey);
- }
运行结果:
核心机制
实现原理
大家有想过TreeMap的底层是怎么实现的吗,是如何维护key的顺序呢?答案就是基于红黑树实现的。
那什么是红黑树呢?我们在这里简单的认识一下,了解一下红黑树的特点:红黑树是一颗自平衡的排序二叉树。我们就先从二叉树开始说起。
- 二叉树
二叉树很容易理解,就是一棵树分俩叉。
上面这颗就是一颗最普通的二叉树。但是你会发现看起来不那么美观,因为你以H为根节点,发现左右两边高低不平衡,高度相差达到了2。于是出现了平衡二叉树,使得左右两边高低差不多。
- 平衡二叉树
这下子应该能看到,不管是从任何一个字母为根节点,左右两边的深度差不了2,最多是1。这就是平衡二叉树。不过好景不长,有一天,突然要把字母变成数字,还要保持这种特性怎么办呢?于是又出现了平衡二叉排序树。
- 平衡二叉排序树
不管是从长相(平衡),还是从规律(排序)感觉这棵树超级完美。但是有一个问题,那就是在增加删除节点的时候,你要时刻去让这棵树保持平衡,需要做太多的工作了,旋转的次数超级多,于是乎出现了红黑树。
- 红黑树
这就是传说中的红黑树,和平衡二叉排序树的区别就是每个节点涂上了颜色,他有下列五条性质:
- 每个节点都只能是红色或者黑色
- 根节点是黑色
- 每个叶节点(NIL节点,空节点)是黑色的。
- 如果一个结点是红的,则它两个子节点都是黑的。也就是说在一条路径上不能出现相邻的两个红色结点。
- 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
这些性质有什么优点呢?就是插入效率超级高。因为在插入一个元素的时候,最多只需三次旋转,O(1)的复杂度,但是有一点需要说明他的查询效率略微逊色于平衡二叉树,因为他比平衡二叉树会稍微不平衡最多一层,也就是说红黑树的查询性能只比相同内容的avl树最多多一次比较。如何去旋转呢?如下图所示。
首先是左旋:
然后是右旋:
红黑树更详细的内容可以参考这篇文章:segmentfault.com/a/119000001…
源码解析
成员变量
- //这是一个比较器,方便插入查找元素等操作
- private final Comparator<? super K> comparator;
- //红黑树的根节点:每个节点是一个Entry
- private transient Entry<K,V> root;
- //集合元素数量
- private transient int size = 0;
- //集合修改的记录
- private transient int modCount = 0;
- comparator是一个排序器,作为key的排序规则
- root是红黑树的根节点,说明的确底层用的红黑树作为数据结构。
- static final class Entry<K,V> implements Map.Entry<K,V> {
- K key;
- V value;
- //左子树
- Entry<K,V> left;
- //右子树
- Entry<K,V> right;
- //父节点
- Entry<K,V> parent;
- //每个节点的颜色:红黑树属性。
- boolean color = BLACK;
- Entry(K key, V value, Entry<K,V> parent) {
- this.key = key;
- this.value = value;
- this.parent = parent;
- }
- public K getKey() {
- return key;
- }
- public V getValue() {
- return value;
- }
- public V setValue(V value) {
- V oldValue = this.value;
- this.value = value;
- return oldValue;
- }
-
- public boolean equals(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry<?,?> e = (Map.Entry<?,?>)o;
-
- return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
- }
-
- public int hashCode() {
- int keyHash = (key==null ? 0 : key.hashCode());
- int valueHash = (value==null ? 0 : value.hashCode());
- return keyHash ^ valueHash;
- }
-
- public String toString() {
- return key + "=" + value;
- }
- }
查找get方法
TreeMap基于红黑树实现,而红黑树是一种自平衡二叉查找树,所以 TreeMap 的查找操作流程和二叉查找树一致。二叉树的查找流程是这样的,先将目标值和根节点的值进行比较,如果目标值小于根节点的值,则再和根节点的左孩子进行比较。如果目标值大于根节点的值,则继续和根节点的右孩子比较。在查找过程中,如果目标值和二叉树中的某个节点值相等,则返回 true,否则返回 false。TreeMap 查找和此类似,只不过在 TreeMap 中,节点(Entry)存储的是键值对<k,v>。在查找过程中,比较的是键的大小,返回的是值,如果没找到,则返回null。TreeMap 中的查找方法是get。
- public V get(Object key) {
- //调用 getEntry方法查找
- Entry<K,V> p = getEntry(key);
- return (p==null ? null : p. value);
- }
-
- final Entry<K,V> getEntry(Object key) {
- / 如果比较器为空,只是用key作为比较器查询
- if (comparator != null)
- return getEntryUsingComparator(key);
- if (key == null)
- throw new NullPointerException();
- Comparable<? super K> k = (Comparable<? super K>) key;
- // 取得root节点
- Entry<K,V> p = root;
- //核心来了:从root节点开始查找,根据比较器判断是在左子树还是右子树
- while (p != null) {
- int cmp = k.compareTo(p.key );
- if (cmp < 0)
- p = p. left;
- else if (cmp > 0)
- p = p. right;
- else
- return p;
- }
-
插入put方法
我们来看下关键的插入方法,在插入时候是如何维护key的。
- public V put(K key, V value) {
- Entry<K,V> t = root;
- // 1.如果根节点为 null,将新节点设为根节点
- if (t == null) {
- compare(key, key); // type (and possibly null) check
-
- root = new Entry<>(key, value, null);
- size = 1;
- modCount++;
- return null;
- }
- //如果root不为null,说明已存在元素
- int cmp;
- Entry<K,V> parent;
- // split comparator and comparable paths
- Comparator<? super K> cpr = comparator;
- //如果比较器不为null 则使用比较器
- if (cpr != null) {
- //找到元素的插入位置
- do {
- parent = t;
- cmp = cpr.compare(key, t.key);
- //当前key小于节点key 向左子树查找
- if (cmp < 0)
- t = t.left;
- //当前key大于节点key 向右子树查找
- else if (cmp > 0)
- t = t.right;
- else
- //相等的情况下 直接更新节点值
- return t.setValue(value);
- } while (t != null);
- }
- //如果比较器为null 则使用默认比较器
- else {
- //如果key为null 则抛出异常
- if (key == null)
- throw new NullPointerException();
- @SuppressWarnings("unchecked")
- Comparable<? super K> k = (Comparable<? super K>) key;
- //找到元素的插入位置
- do {
- parent = t;
- cmp = k.compareTo(t.key);
- if (cmp < 0)
- t = t.left;
- else if (cmp > 0)
- t = t.right;
- else
- return t.setValue(value);
- } while (t != null);
- }
- Entry<K,V> e = new Entry<>(key, value, parent);
- //根据比较结果决定插入到左子树还是右子树
- if (cmp < 0)
- parent.left = e;
- else
- parent.right = e;
- //保持红黑树性质,进行红黑树的旋转等操作
- fixAfterInsertion(e);
- size++;
- modCount++;
- return null;
- }
比较关键的就是fixAfterInsertion方法, 看懂这个方法需要你对红黑树的机制比较了解。
- private void fixAfterInsertion(Entry<K,V> x) {
- // 将新插入节点的颜色设置为红色
- x. color = RED;
- // while循环,保证新插入节点x不是根节点或者新插入节点x的父节点不是红色(这两种情况不需要调整)
- while (x != null && x != root && x. parent.color == RED) {
- // 如果新插入节点x的父节点是祖父节点的左孩子
- if (parentOf(x) == leftOf(parentOf (parentOf(x)))) {
- // 取得新插入节点x的叔叔节点
- Entry<K,V> y = rightOf(parentOf (parentOf(x)));
- // 如果新插入x的父节点是红色
- if (colorOf(y) == RED) {
- // 将x的父节点设置为黑色
- setColor(parentOf (x), BLACK);
- // 将x的叔叔节点设置为黑色
- setColor(y, BLACK);
- // 将x的祖父节点设置为红色
- setColor(parentOf (parentOf(x)), RED);
- // 将x指向祖父节点,如果x的祖父节点的父节点是红色,按照上面的步奏继续循环
- x = parentOf(parentOf (x));
- } else {
- // 如果新插入x的叔叔节点是黑色或缺少,且x的父节点是祖父节点的右孩子
- if (x == rightOf( parentOf(x))) {
- // 左旋父节点
- x = parentOf(x);
- rotateLeft(x);
- }
- // 如果新插入x的叔叔节点是黑色或缺少,且x的父节点是祖父节点的左孩子
- // 将x的父节点设置为黑色
- setColor(parentOf (x), BLACK);
- // 将x的祖父节点设置为红色
- setColor(parentOf (parentOf(x)), RED);
- // 右旋x的祖父节点
- rotateRight( parentOf(parentOf (x)));
- }
- } else { // 如果新插入节点x的父节点是祖父节点的右孩子和上面的相似
- Entry<K,V> y = leftOf(parentOf (parentOf(x)));
- if (colorOf(y) == RED) {
- setColor(parentOf (x), BLACK);
- setColor(y, BLACK);
- setColor(parentOf (parentOf(x)), RED);
- x = parentOf(parentOf (x));
- } else {
- if (x == leftOf( parentOf(x))) {
- x = parentOf(x);
- rotateRight(x);
- }
- setColor(parentOf (x), BLACK);
- setColor(parentOf (parentOf(x)), RED);
- rotateLeft( parentOf(parentOf (x)));
- }
- }
- }
- // 最后将根节点设置为黑色
- root.color = BLACK;
- }
删除remove方法
删除remove是最复杂的方法。
- public V remove(Object key) {
- // 根据key查找到对应的节点对象
- Entry<K,V> p = getEntry(key);
- if (p == null)
- return null;
-
- // 记录key对应的value,供返回使用
- V oldValue = p. value;
- // 删除节点
- deleteEntry(p);
- return oldValue;
- }
- private void deleteEntry(Entry<K,V> p) {
- modCount++;
- //元素个数减一
- size--;
- // 如果被删除的节点p的左孩子和右孩子都不为空,则查找其替代节
- if (p.left != null && p. right != null) {
- // 查找p的替代节点
- Entry<K,V> s = successor (p);
- p. key = s.key ;
- p. value = s.value ;
- p = s;
- }
- Entry<K,V> replacement = (p. left != null ? p.left : p. right);
- if (replacement != null) {
- // 将p的父节点拷贝给替代节点
- replacement. parent = p.parent ;
- // 如果替代节点p的父节点为空,也就是p为跟节点,则将replacement设置为根节点
- if (p.parent == null)
- root = replacement;
- // 如果替代节点p是其父节点的左孩子,则将replacement设置为其父节点的左孩子
- else if (p == p.parent. left)
- p. parent.left = replacement;
- // 如果替代节点p是其父节点的左孩子,则将replacement设置为其父节点的右孩子
- else
- p. parent.right = replacement;
- // 将替代节点p的left、right、parent的指针都指向空
- p. left = p.right = p.parent = null;
- // 如果替代节点p的颜色是黑色,则需要调整红黑树以保持其平衡
- if (p.color == BLACK)
- fixAfterDeletion(replacement);
- } else if (p.parent == null) { // return if we are the only node.
- // 如果要替代节点p没有父节点,代表p为根节点,直接删除即可
- root = null;
- } else {
- // 如果p的颜色是黑色,则调整红黑树
- if (p.color == BLACK)
- fixAfterDeletion(p);
- // 下面删除替代节点p
- if (p.parent != null) {
- // 解除p的父节点对p的引用
- if (p == p.parent .left)
- p. parent.left = null;
- else if (p == p.parent. right)
- p. parent.right = null;
- // 解除p对p父节点的引用
- p. parent = null;
- }
- }
- }
最终还是落到了对红黑树节点的删除上,需要维持红黑树的特性,做一系列的工作。