A line on the plane is described by an equation Ax + By + C = 0. You are to find any point on this line, whose coordinates are integer numbers from - 5·1018 to 5·1018 inclusive, or to find out that such points do not exist.
Input
The first line contains three integers A, B and C ( - 2·109 ≤ A, B, C ≤ 2·109) — corresponding coefficients of the line equation. It is guaranteed that A2 + B2 > 0.
Output
If the required point exists, output its coordinates, otherwise output -1.
Examples
Input
2 5 3
Output
6 -3
题解:初看这一题,没有想到这个是一道拓展欧几里得题,感觉答案也不唯一,仔细考虑了一下,发现了答案确实只有一个,因为他有一个确定的c,然后这个答案还与a与b的公倍数有关,cai'才知道这就是一道欧几里得的题。
思路:将ax+by+c=0,化为ax+by=-c/gcd(a,b)*gcd(a,b)
- #include <bits/stdc++.h>
- using namespace std;
- const int maxn = 1e5 + 10;
- const int mod = 1e9 + 7;
- long long exgcd(long long a, long long b, long long &x, long long &y)
- {
- if (b == 0)
- {
- x = 1, y = 0;
- return a;
- }
- long long g = exgcd(b, a % b, x, y);
- long long t;
- t = x, x = y, y = t - (a / b) * y;
- return g;
- }
- int main()
- {
- long long a, b, c, x, y;
- cin >> a >> b >> c;
- long long t = exgcd(a, b, x, y);
- if (c % t == 0) printf("%lld %lld\n", -x * c / t, -y * c / t);
- else printf("-1\n");
- return 0;
- }