深圳幻海软件技术有限公司 欢迎您!

Ramda 哪些让人困惑的函数签名规则

2023-02-28

在我们查阅Ramda的文档时,常会见到一些"奇怪"的类型签名和用法,例如:复制(Applicativef,Traversablet)=>(a→fa)→t(fa)→f(ta)1.或者,某一些函数"奇怪"的用法:复制//R.apcanalsobeusedasScombinator//whenonl

在我们查阅 Ramda 的文档 时, 常会见到一些"奇怪"的类型签名和用法,例如:

(Applicative f, Traversable t) => (a → f a) → t (f a) → f (t a)
  • 1.

或者,某一些函数"奇怪"的用法:

// R.ap can also be used as S combinator // when only two functions are passed 
R.ap(R.concat, R.toUpper)('Ramda') //=> 'RamdaRAMDA'
  • 1.
  • 2.

这些"奇怪"的点背后投射着 Ramda "更深"一层的设计逻辑, 本文将会对此作出讲解, 并阐述背后通用的函数式编程理论知识。

Ramda 为人熟知的一面​

Ramda 经常被当做 Lodash 的另外一个"更加FP"的替代库,相对于 Lodash,Ramda 的优势(之一)在于完备的柯里化与 data last 的设计带来的便捷的管道式编程(pipe)。

举一个简单的代码对比示例:

  • Ramda:
const myFn = R.pipe (
  R.fn1,
  R.fn2 ('arg1', 'arg2'),
  R.fn3 ('arg3'),
  R.fn4
)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • Lodash:
const myFn = (x, y) => {
  const var1 = _.fn1 (x, y)
  const var2 = _.fn2 (var1, 'arg1', 'arg2')
  const var3 = _.fn3 (var2, 'arg3')
  return _.fn4 (var3)
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

Ramda 类型签名​

在 Ramda 的 API 文档中, 类型签名的语法有些"奇怪":

  • add: Number → Number → Number

我们结合 Ramda 的柯里化规则, 稍加推测, 可以将这个函数转换为TypeScript 的定义:

export function add(a: number, b: number): number;
export function add(a: number): (b: number) => number;
  • 1.
  • 2.

OK, 那为什么Ramda 的文档不直接使用TypeScript 表达函数的类型呢? -- 因为更加简洁!

Ramda 文档中的类型签名使用的是Haskell 的语法, Haskell 作为一门纯函数式编程语言, 可以很简洁地表达柯里化的语义, 相较之下, TypeScript 的表达方式就显得比较臃肿。

当然, 使用Haskell 的类型签名的意义不仅于此, 让我们再看看其他"奇怪"的函数类型:

  • ap:
[a → b][a][b]
Apply f => f (a → b) → f a → f b
(r → a → b)(r → a)(r → b)
  • 1.
  • 2.
  • 3.

结合文档中的demo:

R.ap([R.multiply(2), R.add(3)], [1,2,3]); //=> [2, 4, 6, 4, 5, 6]

R.ap([R.concat('tasty '), R.toUpper], ['pizza', 'salad']); //=> ["tasty pizza", "tasty salad", "PIZZA", "SALAD"] 

// R.ap can also be used as S combinator 
// when only two functions are passed 
R.ap(R.concat, R.toUpper)('Ramda') //=> 'RamdaRAMDA'
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.

[a → b] → [a] → [b]我们好理解, 就是笛卡尔积;

(r → a → b) → (r → a) → (r → b)我们也能理解, 就是两个函数的串联;

Apply f => f (a → b) → f a → f b就有点难理解了, 语法上就有些陌生, 我们先将其翻译成TypeScript 语法:

:), 好吧, 这段类型没法简单地翻译成TypeScript, 因为: TypeScript 不支持将 「类型构造器」 作为类型参数!举个例子:

type T<F> = F<number>;
  • 1.

报错信息如下:

Type 'F' is not generic.
  • 1.

在类型签名中F​是一个类型构造器, 既和Array一样的 「返回类型的类型」, 然而, TypeScript 里根本无法声明"一个类型参数为类型构造器"。

正如示例中type T<F> = F<number>;​中, 我们无法告诉TypeScript, 这里的F​是一个类型构造器, 所以当将number​传入F的时候, 就报错了。

OK, 我们假设TypeScript 支持声明"一个类型参数为类型构造器", 让我们再来看看Apply f => f (a → b) → f a → f b该怎么翻译:

type AP = <F extends Appy, A, B>(f: F<((a: A) => B)>) => (fa: F<A>) => F<B>;
  • 1.

这里的F可以理解为一种 「上下文」, 这段类型签名可以先简单地理解为:

将一个包裹在上下文中的「函数」取出, 再将另一个包裹在上下文中的「值」取出, 调用函数后, 将函数的返回值重新包裹进上下文中并返回。

这里的 「上下文」 是一个泛指, 比如我们可以将其特异化(specialize)为 Promise :

type AP = <A, B>(f: Promise<((a: A) => B)>) => (fa: Promise<A>) => Promise<B>;  
const ap: AP = (f) => fa => f.then(ff => fa.then(ff));
  • 1.
  • 2.

ap​ 或说 Apply 作为函数式编程中的一种常见抽象, 有非常重要重要的学习意义, 但其抽象的解析超出本文范围, 在这里我们只聚焦于「是什么」, 暂不考虑「为什么」。

那么, (r → a → b) → (r → a) → (r → b)与Apply f => f (a → b) → f a → f b是什么关系?

他们之间是同父异母的关系, (r → a → b) → (r → a) → (r → b)​是对Apply f => f (a → b) → f a → f b的特异化, 正如我们对Promise 做的那样。

函数也可以是一个 「上下文」?

答案是可以的, 我们可以将一个一元函数a -> b​理解为"一个包裹在上下文中的b​, 只不过为了获取这个b​, 需要先传入一个a。

先看看 Haskell 对ap 的定义:

instance Applicative ((->) r) where
    (<*>) f g x = f x (g x)
  • 1.
  • 2.

替换为TypeScript 的实现, 我们将上面的Promise 的例子稍微修改下, 得出:

type F<A> = (a: any) => A;

type AP = <A, B>(f: F<((a: A) => B)>) => (fa: F<A>) => F<B>;  
  
const ap: AP = f => fa => {  
    return (r) => f(r)(fa(r));  
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.

同样的, 我们得到Apply 特异化为Array 的实现:

type AP = <A, B>(f: Array<((a: A) => B)>) => (fa: Array<A>) => Array<B>;

const ap: AP = f => fa => {
 return f.flatMap(ff => fa.map(ff));
};
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

综上所述, 我们可以得出结论:

ap的类型签名[a → b] → [a] → [b]和(r → a → b) → (r → a) → (r → b)是Apply f => f (a → b) → f a → f b的特异化。