重入锁
锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized(重量级) 和 ReentrantLock(轻量级)等等 ) 。这些已经写好提供的锁为我们开发提供了便利。
重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响。
在JAVA环境下 ReentrantLock 和synchronized 都是 可重入锁
public class Test implements Runnable {
public synchronized void get() {
System.out.println("name:" + Thread.currentThread().getName() + " get();");
set();
}
public synchronized void set() {
System.out.println("name:" + Thread.currentThread().getName() + " set();");
}
@Override
public void run() {
get();
}
public static void main(String[] args) {
Test ss = new Test();
new Thread(ss).start();
new Thread(ss).start();
new Thread(ss).start();
new Thread(ss).start();
}
}
public class Test02 extends Thread {
ReentrantLock lock = new ReentrantLock();
public void get() {
lock.lock();
System.out.println(Thread.currentThread().getId());
set();
lock.unlock();
}
public void set() {
lock.lock();
System.out.println(Thread.currentThread().getId());
lock.unlock();
}
@Override
public void run() {
get();
}
public static void main(String[] args) {
Test ss = new Test();
new Thread(ss).start();
new Thread(ss).start();
new Thread(ss).start();
}
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
读写锁
相比Java中的锁(Locks in Java)里Lock实现,读写锁更复杂一些。假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁。在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以应该允许多个线程能在同时读取共享资源。但是如果有一个线程想去写这些共享资源,就不应该再有其它线程对该资源进行读或写(译者注:也就是说:读-读能共存,读-写不能共存,写-写不能共存)。这就需要一个读/写锁来解决这个问题。Java5在java.util.concurrent包中已经包含了读写锁。尽管如此,我们还是应该了解其实现背后的原理。
public class Cache {
static Map<String, Object> map = new HashMap<String, Object>();
static ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
static Lock r = rwl.readLock();
static Lock w = rwl.writeLock();
// 获取一个key对应的value
public static final Object get(String key) {
r.lock();
try {
System.out.println("正在做读的操作,key:" + key + " 开始");
Thread.sleep(100);
Object object = map.get(key);
System.out.println("正在做读的操作,key:" + key + " 结束");
System.out.println();
return object;
} catch (InterruptedException e) {
} finally {
r.unlock();
}
return key;
}
// 设置key对应的value,并返回旧有的value
public static final Object put(String key, Object value) {
w.lock();
try {
System.out.println("正在做写的操作,key:" + key + ",value:" + value + "开始.");
Thread.sleep(100);
Object object = map.put(key, value);
System.out.println("正在做写的操作,key:" + key + ",value:" + value + "结束.");
System.out.println();
return object;
} catch (InterruptedException e) {
} finally {
w.unlock();
}
return value;
}
// 清空所有的内容
public static final void clear() {
w.lock();
try {
map.clear();
} finally {
w.unlock();
}
}
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
for (int i = 0; i < 10; i++) {
Cache.put(i + "", i + "");
}
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
for (int i = 0; i < 10; i++) {
Cache.get(i + "");
}
}
}).start();
}
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
悲观锁、乐观锁
乐观锁
总是认为不会产生并发问题,每次去取数据的时候总认为不会有其他线程对数据进行修改,因此不会上锁,但是在更新时会判断其他线程在这之前有没有对数据进行修改,一般会使用版本号机制或CAS操作实现。
version方式:一般是在数据表中加上一个数据版本号version字段,表示数据被修改的次数,当数据被修改时,version值会加一。当线程A要更新数据值时,在读取数据的同时也会读取version值,在提交更新时,若刚才读取到的version值为当前数据库中的version值相等时才更新,否则重试更新操作,直到更新成功。
核心SQL语句
update table set x=x+1, version=version+1 where id=#{id} and version=#{version};
- 1.
CAS操作方式:即compare and swap 或者 compare and set,涉及到三个操作数,数据所在的内存值,预期值,新值。当需要更新时,判断当前内存值与之前取到的值是否相等,若相等,则用新值更新,若失败则重试,一般情况下是一个自旋操作,即不断的重试。
悲观锁
总是假设最坏的情况,每次取数据时都认为其他线程会修改,所以都会加锁(读锁、写锁、行锁等),当其他线程想要访问数据时,都需要阻塞挂起。可以依靠数据库实现,如行锁、读锁和写锁等,都是在操作之前加锁,在Java中,synchronized的思想也是悲观锁。
原子类
java.util.concurrent.atomic包:原子类的小工具包,支持在单个变量上解除锁的线程安全编程
原子变量类相当于一种泛化的 volatile 变量,能够支持原子的和有条件的读-改-写操作。AtomicInteger 表示一个int类型的值,并提供了 get 和 set 方法,这些 Volatile 类型的int变量在读取和写入上有着相同的内存语义。它还提供了一个原子的 compareAndSet 方法(如果该方法成功执行,那么将实现与读取/写入一个 volatile 变量相同的内存效果),以及原子的添加、递增和递减等方法。AtomicInteger 表面上非常像一个扩展的 Counter 类,但在发生竞争的情况下能提供更高的可伸缩性,因为它直接利用了硬件对并发的支持。
为什么会有原子类
CAS:Compare and Swap,即比较再交换。
jdk5增加了并发包java.util.concurrent.*,其下面的类使用CAS算法实现了区别于synchronouse同步锁的一种乐观锁。JDK 5之前Java语言是靠synchronized关键字保证同步的,这是一种独占锁,也是是悲观锁。
如果同一个变量要被多个线程访问,则可以使用该包中的类
AtomicBoolean
AtomicInteger
AtomicLong
AtomicReference
CAS无锁模式
什么是CAS
CAS:Compare and Swap,即比较再交换。
jdk5增加了并发包java.util.concurrent.*,其下面的类使用CAS算法实现了区别于synchronouse同步锁的一种乐观锁。JDK 5之前Java语言是靠synchronized关键字保证同步的,这是一种独占锁,也是是悲观锁。
CAS算法理解
(1)与锁相比,使用比较交换(下文简称CAS)会使程序看起来更加复杂一些。但由于其非阻塞性,它对死锁问题天生免疫,并且,线程间的相互影响也远远比基于锁的方式要小。更为重要的是,使用无锁的方式完全没有锁竞争带来的系统开销,也没有线程间频繁调度带来的开销,因此,它要比基于锁的方式拥有更优越的性能。
(2)无锁的好处:
第一,在高并发的情况下,它比有锁的程序拥有更好的性能;
第二,它天生就是死锁免疫的。
就凭借这两个优势,就值得我们冒险尝试使用无锁的并发。
(3)CAS算法的过程是这样:它包含三个参数CAS(V,E,N): V表示要更新的变量,E表示预期值,N表示新值。仅当V值等于E值时,才会将V的值设为N,如果V值和E值不同,则说明已经有其他线程做了更新,则当前线程什么都不做。最后,CAS返回当前V的真实值。
(4)CAS操作是抱着乐观的态度进行的,它总是认为自己可以成功完成操作。当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败。失败的线程不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。基于这样的原理,CAS操作即使没有锁,也可以发现其他线程对当前线程的干扰,并进行恰当的处理。
(5)简单地说,CAS需要你额外给出一个期望值,也就是你认为这个变量现在应该是什么样子的。如果变量不是你想象的那样,那说明它已经被别人修改过了。你就重新读取,再次尝试修改就好了。
(6)在硬件层面,大部分的现代处理器都已经支持原子化的CAS指令。在JDK 5.0以后,虚拟机便可以使用这个指令来实现并发操作和并发数据结构,并且,这种操作在虚拟机中可以说是无处不在。
常用原子类
Java中的原子操作类大致可以分为4类:原子更新基本类型、原子更新数组类型、原子更新引用类型、原子更新属性类型。这些原子类中都是用了无锁的概念,有的地方直接使用CAS操作的线程安全的类型。
AtomicBoolean
AtomicInteger
AtomicLong
AtomicReference
public class Test0001 implements Runnable {
private static Integer count = 1;
private static AtomicInteger atomic = new AtomicInteger();
@Override
public void run() {
while (true) {
int count = getCountAtomic();
System.out.println(count);
if (count >= 150) {
break;
}
}
}
public synchronized Integer getCount() {
try {
Thread.sleep(50);
} catch (Exception e) {
// TODO: handle exception
}
return count++;
}
public Integer getCountAtomic() {
try {
Thread.sleep(50);
} catch (Exception e) {
// TODO: handle exception
}
return atomic.incrementAndGet();
}
public static void main(String[] args) {
Test0001 test0001 = new Test0001();
Thread t1 = new Thread(test0001);
Thread t2 = new Thread(test0001);
t1.start();
t2.start();
}
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
CAS(乐观锁算法)的基本假设前提
CAS比较与交换的伪代码可以表示为:
do{
备份旧数据;
基于旧数据构造新数据;
}while(!CAS( 内存地址,备份的旧数据,新数据 )
(上图的解释:CPU去更新一个值,但如果想改的值不再是原来的值,操作就失败,因为很明显,有其它操作先改变了这个值。)
就是指当两者进行比较时,如果相等,则证明共享数据没有被修改,替换成新值,然后继续往下运行;如果不相等,说明共享数据已经被修改,放弃已经所做的操作,然后重新执行刚才的操作。容易看出 CAS 操作是基于共享数据不会被修改的假设,采用了类似于数据库的 commit-retry 的模式。当同步冲突出现的机会很少时,这种假设能带来较大的性能提升。
public final int getAndAddInt(Object o, long offset, int delta) {
int v;
do {
v = getIntVolatile(o, offset);
} while (!compareAndSwapInt(o, offset, v, v + delta));
return v;
}
/**
* Atomically increments by one the current value.
*
* @return the updated value
*/
public final int incrementAndGet() {
for (;;) {
//获取当前值
int current = get();
//设置期望值
int next = current + 1;
//调用Native方法compareAndSet,执行CAS操作
if (compareAndSet(current, next))
//成功后才会返回期望值,否则无线循环
return next;
}
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
CAS缺点
CAS存在一个很明显的问题,即ABA问题。
问题:如果变量V初次读取的时候是A,并且在准备赋值的时候检查到它仍然是A,那能说明它的值没有被其他线程修改过了吗?
如果在这段期间曾经被改成B,然后又改回A,那CAS操作就会误认为它从来没有被修改过。针对这种情况,java并发包中提供了一个带有标记的原子引用类AtomicStampedReference,它可以通过控制变量值的版本来保证CAS的正确性。
分布式锁
如果想在不同的jvm中保证数据同步,使用分布式锁技术。
有数据库实现、缓存实现、Zookeeper分布式锁