深圳幻海软件技术有限公司 欢迎您!

分布式事务,原来可以这么玩?

2023-02-26

多个数据要同时操作,如何保证数据的完整性,以及一致性?答:事务,是常见的做法。举个栗子:用户下了一个订单,需要修改余额表,订单表,流水表,于是会有类似的伪代码:复制start transaction;  CURD table t_account;&n

多个数据要同时操作,如何保证数据的完整性,以及一致性?

答:事务,是常见的做法。

举个栗子:

用户下了一个订单,需要修改余额表,订单表,流水表,于是会有类似的伪代码:

start transaction; 
 CURD table t_account;  any Exception rollback; 
 CURD table t_order;      any Exception rollback; 
 CURD table t_flow;        any Exception rollback; 
commit; 
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 如果对余额表,订单表,流水表的SQL操作全部成功,则全部提交
  • 如果任何一个出现问题,则全部回滚

事务,以保证数据的完整性以及一致性。

事务的方案会有什么潜在问题?

答:互联网的业务特点,数据量较大,并发量较大,经常使用拆库的方式提升系统的性能。如果进行了拆库,余额、订单、流水可能分布在不同的数据库上,甚至不同的数据库实例上,此时就不能用数据库原生事务来保证数据的一致性了。

高并发易落地的分布式事务,是行业没有很好解决的难题,那怎么办呢?

答:补偿事务是一种常见的实践。

什么是补偿事务?

答:补偿事务,是一种在业务端实施业务逆向操作事务。

举个栗子:

修改余额,事务为:

int Do_AccountT(uid, money){ 
    start transaction; 
         //余额改变money这么多 
         CURD table t_account with money for uid; 
         anyException rollback return NO; 
    commit; 
    return YES; 

  
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.

那么,修改余额,补偿事务可以是:

int Compensate_AccountT(uid, money){ 
         //做一个money的反向操作 
         return Do_AccountT(uid, -1*money){ 

  • 1.
  • 2.
  • 3.
  • 4.

同理,订单操作,事务是:Do_OrderT,新增一个订单;

订单操作,补偿事务是:Compensate_OrderT,删除一个订单。

要保证余额与订单的一致性,伪代码:

// 执行第一个事务 
int flag = Do_AccountT(); 
if(flag=YES){ 
    //第一个事务成功,则执行第二个事务 
    flagDo_OrderT(); 
    if(flag=YES){ 
        // 第二个事务成功,则成功 
        return YES; 
    } 
    else{ 
        // 第二个事务失败,执行第一个事务的补偿事务 
        Compensate_AccountT(); 
    } 

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.

补偿事务有什么缺点?

  • 不同的业务要写不同的补偿事务,不具备通用性;
  • 没有考虑补偿事务的失败;
  • 如果业务流程很复杂,if/else会嵌套非常多层;

画外音:上面的例子还只考虑了余额+订单的一致性,就有2*2=4个分支,如果要考虑余额+订单+流水的一致性,则会有2*2*2=8个if/else分支,复杂性呈指数级增长。

还有其它简易一致性实践么?

答:多个数据库实例上的多个事务,要保证一致性,可以进行“后置提交优化”。

单库是用这样一个大事务保证一致性:

start transaction; 
 CURD table t_account;  any Exception rollback; 
 CURD table t_order;      any Exception rollback; 
 CURD table t_flow;        any Exception rollback; 
commit; 
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

拆分成了多个库后,大事务会变成三个小事务:

start transaction1; 
         //第一个库事务执行 
         CURD table t_account; any Exception rollback; 
         … 
// 第一个库事务提交 
commit1; 
 
start transaction2; 
         //第二个库事务执行 
         CURD table t_order; any Exception rollback; 
         … 
// 第二个库事务提交 
commit2; 
 
start transaction3; 
         //第三个库事务执行 
         CURD table t_flow; any Exception rollback; 
         … 
// 第三个库事务提交 
commit3; 
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.

画外音:再次提醒,这三个事务发生在三个库,甚至3个不同实例的数据库上。

一个事务,分成执行与提交两个阶段:

  • 执行(CURD)的时间很长
  • 提交(commit)的执行很快

于是整个执行过程的时间轴如下:

  • 第一个事务执行200ms,提交1ms;
  • 第二个事务执行120ms,提交1ms;
  • 第三个事务执行80ms,提交1ms;

在什么时候,会出现不一致?

答:第一个事务成功提交之后,最后一个事务成功提交之前,如果出现问题(例如服务器重启,数据库异常等),都可能导致数据不一致。

画外音:如上图,最后202ms内出现异常,会出现不一致。

什么是后置提交优化?

答:如果改变事务执行与提交的时序,变成事务先执行,最后一起提交。

  • 第一个事务执行200ms,第二个事务执行120ms,第三个事务执行80ms;
  • 第一个事务提交1ms,第二个事务提交1ms,第三个事务提交1ms;

后置提交优化后,在什么时候,会出现不一致?

答:问题的答案与之前相同,第一个事务成功提交之后,最后一个事务成功提交之前,如果出现问题(例如服务器重启,数据库异常等),都可能导致数据不一致。

画外音:如上图,最后2ms内出现异常,会出现不一致。

有什么区别和差异?

答:

  • 串行事务方案,总执行时间是303ms,最后202ms内出现异常都可能导致不一致;
  • 后置提交优化方案,总执行时间也是303ms,但最后2ms内出现异常才会导致不一致;

虽然没有彻底解决数据的一致性问题,但不一致出现的概率大大降低了。

画外音:上面这个例子,概率降低了100倍。

后置提交优化,有什么不足?

答:对事务吞吐量会有影响:

  • 串行事务方案,第一个库事务提交,数据库连接就释放了;
  • 后置提交优化方案,所有库的连接,要等到所有事务执行完才释放;

这就意味着,数据库连接占用的时间增长了,系统整体的吞吐量降低了。

总结

分布式事务,两种常见的实践:

  • 补偿事务
  • 后置提交优化

trx1.exec(); trx1.commit(); 
trx2.exec(); trx2.commit(); 
trx3.exec(); trx3.commit(); 
  • 1.
  • 2.
  • 3.

优化为:

trx1.exec(); trx2.exec(); trx3.exec(); 
trx1.commit(); trx2.commit(); trx3.commit(); 
  • 1.
  • 2.

这个小小的改动(改动成本极低),不能彻底解决多库分布式事务数据一致性问题,但能大大降低数据不一致的概率,牺牲的是吞吐量。

对于一致性与吞吐量的折衷,还需要业务架构师谨慎权衡折衷。

画外音:还是那句话,一切脱离业务常见的架构设计,都是耍流氓。

思路比结论重要,希望大家有收获。

【本文为51CTO专栏作者“58沈剑”原创稿件,转载请联系原作者】

戳这里,看该作者更多好文