深圳幻海软件技术有限公司 欢迎您!

雪花算法(SnowFlake)

2023-04-16

简介现在的服务基本是分布式、微服务形式的,而且大数据量也导致分库分表的产生,对于水平分表就需要保证表中id的全局唯一性。对于MySQL而言,一个表中的主键id一般使用自增的方式,但是如果进行水平分表之后,多个表中会生成重复的id值。那么如何保证水平分表后的多张表中的id是全局唯一性的呢?如果还是借助

简介

现在的服务基本是分布式、微服务形式的,而且大数据量也导致分库分表的产生,对于水平分表就需要保证表中 id 的全局唯一性。

对于 MySQL 而言,一个表中的主键 id 一般使用自增的方式,但是如果进行水平分表之后,多个表中会生成重复的 id 值。那么如何保证水平分表后的多张表中的 id 是全局唯一性的呢?

如果还是借助数据库主键自增的形式,那么可以让不同表初始化一个不同的初始值,然后按指定的步长进行自增。例如有3张拆分表,初始主键值为1,2,3,自增步长为3。

当然也有人使用 UUID 来作为主键,但是 UUID 生成的是一个无序的字符串,对于 MySQL 推荐使用增长的数值类型值作为主键来说不适合。

也可以使用 Redis 的自增原子性来生成唯一 id,但是这种方式业内比较少用。

当然还有其他解决方案,不同互联网公司也有自己内部的实现方案。雪花算法是其中一个用于解决分布式 id 的高效方案,也是许多互联网公司在推荐使用的。

SnowFlake 雪花算法

SnowFlake 中文意思为雪花,故称为雪花算法。最早是 Twitter 公司在其内部用于分布式环境下生成唯一 ID。在2014年开源 scala 语言版本。

雪花算法的原理就是生成一个的 64 位比特位的 long 类型的唯一 id。

  • 最高 1 位固定值 0,因为生成的 id 是正整数,如果是 1 就是负数了。

  • 接下来 41 位存储毫秒级时间戳,2^41/(1000*60*60*24*365)=69,大概可以使用 69 年。

  • 再接下 10 位存储机器码,包括 5 位 datacenterId 和 5 位 workerId。最多可以部署 2^10=1024 台机器。

  • 最后 12 位存储序列号。同一毫秒时间戳时,通过这个递增的序列号来区分。即对于同一台机器而言,同一毫秒时间戳下,可以生成 2^12=4096 个不重复 id。

可以将雪花算法作为一个单独的服务进行部署,然后需要全局唯一 id 的系统,请求雪花算法服务获取 id 即可。

对于每一个雪花算法服务,需要先指定 10 位的机器码,这个根据自身业务进行设定即可。例如机房号+机器号,机器号+服务号,或者是其他可区别标识的 10 位比特位的整数值都行。

算法实现

  1. package com.ruoyi.common.utils;
  2. import java.util.Date;
  3. /**
  4. * @ClassName: SnowFlakeUtil
  5. * 雪花算法
  6. */
  7. public class SnowFlakeUtil {
  8. private static SnowFlakeUtil snowFlakeUtil;
  9. static {
  10. snowFlakeUtil = new SnowFlakeUtil();
  11. }
  12. // 初始时间戳(纪年),可用雪花算法服务上线时间戳的值
  13. // 1650789964886:2022-04-24 16:45:59
  14. private static final long INIT_EPOCH = 1650789964886L;
  15. // 时间位取&
  16. private static final long TIME_BIT = 0b1111111111111111111111111111111111111111110000000000000000000000L;
  17. // 记录最后使用的毫秒时间戳,主要用于判断是否同一毫秒,以及用于服务器时钟回拨判断
  18. private long lastTimeMillis = -1L;
  19. // dataCenterId占用的位数
  20. private static final long DATA_CENTER_ID_BITS = 5L;
  21. // dataCenterId占用5个比特位,最大值31
  22. // 0000000000000000000000000000000000000000000000000000000000011111
  23. private static final long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS);
  24. // dataCenterId
  25. private long dataCenterId;
  26. // workId占用的位数
  27. private static final long WORKER_ID_BITS = 5L;
  28. // workId占用5个比特位,最大值31
  29. // 0000000000000000000000000000000000000000000000000000000000011111
  30. private static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);
  31. // workId
  32. private long workerId;
  33. // 最后12位,代表每毫秒内可产生最大序列号,即 2^12 - 1 = 4095
  34. private static final long SEQUENCE_BITS = 12L;
  35. // 掩码(最低12位为1,高位都为0),主要用于与自增后的序列号进行位与,如果值为0,则代表自增后的序列号超过了4095
  36. // 0000000000000000000000000000000000000000000000000000111111111111
  37. private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);
  38. // 同一毫秒内的最新序号,最大值可为 2^12 - 1 = 4095
  39. private long sequence;
  40. // workId位需要左移的位数 12
  41. private static final long WORK_ID_SHIFT = SEQUENCE_BITS;
  42. // dataCenterId位需要左移的位数 12+5
  43. private static final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;
  44. // 时间戳需要左移的位数 12+5+5
  45. private static final long TIMESTAMP_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;
  46. /**
  47. * 无参构造
  48. */
  49. public SnowFlakeUtil() {
  50. //实际分布式系统中,一种参考方案是dataCenterId为mac地址,workerId为pid相关
  51. this(1, 1);
  52. }
  53. /**
  54. * 有参构造
  55. * @param dataCenterId
  56. * @param workerId
  57. */
  58. public SnowFlakeUtil(long dataCenterId, long workerId) {
  59. // 检查dataCenterId的合法值
  60. if (dataCenterId < 0 || dataCenterId > MAX_DATA_CENTER_ID) {
  61. throw new IllegalArgumentException(
  62. String.format("dataCenterId 值必须大于 0 并且小于 %d", MAX_DATA_CENTER_ID));
  63. }
  64. // 检查workId的合法值
  65. if (workerId < 0 || workerId > MAX_WORKER_ID) {
  66. throw new IllegalArgumentException(String.format("workId 值必须大于 0 并且小于 %d", MAX_WORKER_ID));
  67. }
  68. this.workerId = workerId;
  69. this.dataCenterId = dataCenterId;
  70. }
  71. /**
  72. * 获取唯一ID
  73. * @return
  74. */
  75. public static Long getSnowFlakeId() {
  76. return snowFlakeUtil.nextId();
  77. }
  78. /**
  79. * 通过雪花算法生成下一个id,注意这里使用synchronized同步
  80. * @return 唯一id
  81. */
  82. public synchronized long nextId() {
  83. long currentTimeMillis = System.currentTimeMillis();
  84. System.out.println(currentTimeMillis);
  85. // 当前时间小于上一次生成id使用的时间,可能出现服务器时钟回拨问题
  86. if (currentTimeMillis < lastTimeMillis) {
  87. throw new RuntimeException(
  88. String.format("可能出现服务器时钟回拨问题,请检查服务器时间。当前服务器时间戳:%d,上一次使用时间戳:%d", currentTimeMillis,
  89. lastTimeMillis));
  90. }
  91. if (currentTimeMillis == lastTimeMillis) {
  92. // 还是在同一毫秒内,则将序列号递增1,序列号最大值为4095
  93. // 序列号的最大值是4095,使用掩码(最低12位为1,高位都为0)进行位与运行后如果值为0,则自增后的序列号超过了4095
  94. // 那么就使用新的时间戳
  95. sequence = (sequence + 1) & SEQUENCE_MASK;
  96. if (sequence == 0) {
  97. currentTimeMillis = getNextMillis(lastTimeMillis);
  98. }
  99. } else { // 不在同一毫秒内,则序列号重新从0开始,序列号最大值为4095
  100. sequence = 0;
  101. }
  102. // 记录最后一次使用的毫秒时间戳
  103. lastTimeMillis = currentTimeMillis;
  104. // 核心算法,将不同部分的数值移动到指定的位置,然后进行或运行
  105. // <<:左移运算符, 1 << 2 即将二进制的 1 扩大 2^2 倍
  106. // |:位或运算符, 是把某两个数中, 只要其中一个的某一位为1, 则结果的该位就为1
  107. // 优先级:<< > |
  108. return
  109. // 时间戳部分
  110. ((currentTimeMillis - INIT_EPOCH) << TIMESTAMP_SHIFT)
  111. // 数据中心部分
  112. | (dataCenterId << DATA_CENTER_ID_SHIFT)
  113. // 机器表示部分
  114. | (workerId << WORK_ID_SHIFT)
  115. // 序列号部分
  116. | sequence;
  117. }
  118. /**
  119. * 获取指定时间戳的接下来的时间戳,也可以说是下一毫秒
  120. * @param lastTimeMillis 指定毫秒时间戳
  121. * @return 时间戳
  122. */
  123. private long getNextMillis(long lastTimeMillis) {
  124. long currentTimeMillis = System.currentTimeMillis();
  125. while (currentTimeMillis <= lastTimeMillis) {
  126. currentTimeMillis = System.currentTimeMillis();
  127. }
  128. return currentTimeMillis;
  129. }
  130. /**
  131. * 获取随机字符串,length=13
  132. * @return
  133. */
  134. public static String getRandomStr() {
  135. return Long.toString(getSnowFlakeId(), Character.MAX_RADIX);
  136. }
  137. /**
  138. * 从ID中获取时间
  139. * @param id 由此类生成的ID
  140. * @return
  141. */
  142. public static Date getTimeBySnowFlakeId(long id) {
  143. return new Date(((TIME_BIT & id) >> 22) + INIT_EPOCH);
  144. }
  145. public static void main(String[] args) {
  146. SnowFlakeUtil snowFlakeUtil = new SnowFlakeUtil();
  147. long id = snowFlakeUtil.nextId();
  148. System.out.println("id:" + id);
  149. Date date = SnowFlakeUtil.getTimeBySnowFlakeId(id);
  150. System.out.println(date);
  151. long time = date.getTime();
  152. System.out.println("time:" + time);
  153. System.out.println(getRandomStr());
  154. }
  155. }

算法优缺点

  • 雪花算法有以下几个优点:

  • 高并发分布式环境下生成不重复 id,每秒可生成百万个不重复 id。

  • 基于时间戳,以及同一时间戳下序列号自增,基本保证 id 有序递增。

  • 不依赖第三方库或者中间件。

  • 算法简单,在内存中进行,效率高。

雪花算法有如下缺点:

  • 依赖服务器时间,服务器时钟回拨时可能会生成重复 id。算法中可通过记录最后一个生成 id 时的时间戳来解决,每次生成 id 之前比较当前服务器时钟是否被回拨,避免生成重复 id。

注意事项

其实雪花算法每一部分占用的比特位数量并不是固定死的。例如你的业务可能达不到 69 年之久,那么可用减少时间戳占用的位数,雪花算法服务需要部署的节点超过1024 台,那么可将减少的位数补充给机器码用。

注意,雪花算法中 41 位比特位不是直接用来存储当前服务器毫秒时间戳的,而是需要当前服务器时间戳减去某一个初始时间戳值,一般可以使用服务上线时间作为初始时间戳值。

对于机器码,可根据自身情况做调整,例如机房号,服务器号,业务号,机器 IP 等都是可使用的。对于部署的不同雪花算法服务中,最后计算出来的机器码能区分开来即可。

文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览44207 人正在系统学习中