斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。
示例 1:
- 输入:2
- 输出:1
- 解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
- 输入:3
- 输出:2
- 解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
- 输入:4
- 输出:3
- 解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:
- 0 <= n <= 30
思路
斐波那契数列大家应该非常熟悉不过了,非常适合作为动规第一道题目来练练手。
因为这道题目比较简单,可能一些同学并不需要做什么分析,直接顺手一写就过了。
但「代码随想录」的风格是:简单题目是用来加深对解题方法论的理解的。
通过这道题目让大家可以初步认识到,按照动规五部曲是如何解题的。
对于动规,如果没有方法论的话,可能简单题目可以顺手一写就过,难一点就不知道如何下手了。
所以我总结的动规五部曲,是要用来贯穿整个动态规划系列的,就像之前讲过二叉树系列的递归三部曲,回溯法系列的回溯三部曲一样。后面慢慢大家就会体会到,动规五部曲方法的重要性。
动态规划
动规五部曲:
这里我们要用一个一维dp数组来保存递归的结果
1.确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]
2.确定递推公式
为什么这是一道非常简单的入门题目呢?
因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
3.dp数组如何初始化
题目中把如何初始化也直接给我们了,如下:
dp[0] = 0;
dp[1] = 1;
- 1.
- 2.
4.确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
5.举例推导dp数组
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:
0 1 1 2 3 5 8 13 21 34 55
如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。
以上我们用动规的方法分析完了,C++代码如下:
class Solution {
public:
int fib(int N) {
if (N <= 1) return N;
vector<int> dp(N + 1);
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= N; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[N];
}
};
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 时间复杂度:
- 空间复杂度:
当然可以发现,我们只需要维护两个数值就可以了,不需要记录整个序列。
代码如下:
class Solution {
public:
int fib(int N) {
if (N <= 1) return N;
int dp[2];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= N; i++) {
int sum = dp[0] + dp[1];
dp[0] = dp[1];
dp[1] = sum;
}
return dp[1];
}
};
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 时间复杂度:
- 空间复杂度:
递归解法
本题还可以使用递归解法来做
代码如下:
class Solution {
public:
int fib(int N) {
if (N < 2) return N;
return fib(N - 1) + fib(N - 2);
}
};
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 时间复杂度:
- 空间复杂度:,算上了编程语言中实现递归的系统栈所占空间
这个递归的时间复杂度大家画一下树形图就知道了,如果不清晰的同学,可以看这篇:通过一道面试题目,讲一讲递归算法的时间复杂度!
总结
斐波那契数列这道题目是非常基础的题目,我在后面的动态规划的讲解中将会多次提到斐波那契数列!
这里我严格按照关于动态规划,你该了解这些!中的动规五部曲来分析了这道题目,一些分析步骤可能同学感觉没有必要搞的这么复杂,代码其实上来就可以撸出来。
但我还是强调一下,简单题是用来掌握方法论的,动规五部曲将在接下来的动态规划讲解中发挥重要作用,敬请期待!
本文转载自微信公众号「代码随想录」,可以通过以下二维码关注。转载本文请联系代码随想录公众号。