深圳幻海软件技术有限公司 欢迎您!

0-1背包问题,你该了解这些!

2023-02-28

关于01背包问题,你该了解这些!这周我们正式开始讲解背包问题!但说实话,背包九讲对于小白来说确实不太友好,看起来还是有点费劲的,而且都是伪代码理解起来也吃力。对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。如果这几种背包,分不清,我这里画了一个图,如下:分割等和子集1

关于01背包问题,你该了解这些!

这周我们正式开始讲解背包问题!

但说实话,背包九讲对于小白来说确实不太友好,看起来还是有点费劲的,而且都是伪代码理解起来也吃力。

对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。

如果这几种背包,分不清,我这里画了一个图,如下:

分割等和子集1

至于背包九讲中其他背包,面试几乎不会问,都是竞赛级别的了,leetcode上连多重背包的题目都没有,所以题库也告诉我们,01背包和完全背包就够用了。

而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

所以背包问题的理论基础重中之重是01背包,一定要理解透!

leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。

所以我先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了。

之前可能有些录友已经可以熟练写出背包了,但只要把这个文章仔细看完,相信你会意外收获!

01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

动态规划-背包问题

这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。

这样其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是,这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

在下面的讲解中,我举一个例子:

背包最大重量为4。

物品为:

  重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

问背包能背的物品最大价值是多少?

以下讲解和图示中出现的数字都是以这个例子为例。

二维dp数组01背包

依然动规五部曲分析一波。

确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

只看这个二维数组的定义,大家一定会有点懵,看下面这个图:

动态规划-背包问题1

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。

确定递推公式

再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i][j],

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

动态规划-背包问题2

在看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

代码初始化如下:

for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。 
    dp[0][j] = 0; 

// 正序遍历 
for (int j = weight[0]; j <= bagweight; j++) { 
    dp[0][j] = value[0]; 

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.

此时dp数组初始化情况如图所示:

动态规划-背包问题7

dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

如图:

动态规划-背包问题10

最后初始化代码如下:

// 初始化 dp 
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0)); 
for (int j = weight[0]; j <= bagweight; j++) { 
    dp[0][j] = value[0]; 

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

费了这么大的功夫,才把如何初始化讲清楚,相信不少同学平时初始化dp数组是凭感觉来的,但有时候感觉是不靠谱的。

确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量

动态规划-背包问题3

那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!!但是先遍历物品更好理解。

那么我先给出先遍历物品,然后遍历背包重量的代码。

// weight数组的大小 就是物品个数 
for(int i = 1; i < weight.size(); i++) { // 遍历物品 
    for(int j = 0; j <= bagweight; j++) { // 遍历背包容量 
        if (j < weight[i]) dp[i][j] = dp[i - 1][j]; 
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 
 
    } 

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.

先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)

例如这样:

// weight数组的大小 就是物品个数 
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量 
    for(int i = 1; i < weight.size(); i++) { // 遍历物品 
        if (j < weight[i]) dp[i][j] = dp[i - 1][j]; 
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 
    } 

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.

为什么也是可以的呢?

要理解递归的本质和递推的方向。

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

动态规划-背包问题5

再来看看先遍历背包,再遍历物品呢,如图:

动态规划-背包问题6

大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了。

举例推导dp数组

来看一下对应的dp数组的数值,如图:

动态规划-背包问题4

最终结果就是dp[2][4]。

建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

很多同学做dp题目,遇到各种问题,然后凭感觉东改改西改改,怎么改都不对,或者稀里糊涂就改过了。

主要就是自己没有动手推导一下dp数组的演变过程,如果推导明白了,代码写出来就算有问题,只要把dp数组打印出来,对比一下和自己推导的有什么差异,很快就可以发现问题了。

完整c++测试代码

void test_2_wei_bag_problem1() { 
    vector<int> weight = {1, 3, 4}; 
    vector<int> value = {15, 20, 30}; 
    int bagweight = 4; 
 
    // 二维数组 
    vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0)); 
 
    // 初始化 
    for (int j = weight[0]; j <= bagweight; j++) { 
        dp[0][j] = value[0]; 
    } 
 
    // weight数组的大小 就是物品个数 
    for(int i = 1; i < weight.size(); i++) { // 遍历物品 
        for(int j = 0; j <= bagweight; j++) { // 遍历背包容量 
            if (j < weight[i]) dp[i][j] = dp[i - 1][j]; 
            else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 
 
        } 
    } 
 
    cout << dp[weight.size() - 1][bagweight] << endl; 

 
int main() { 
    test_2_wei_bag_problem1(); 

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.

总结

讲了这么多才刚刚把二维dp的01背包讲完,这里大家其实可以发现最简单的是推导公式了,推导公式估计看一遍就记下来了,但难就难在如何初始化和遍历顺序上。

可能有的同学并没有注意到初始化 和 遍历顺序的重要性,我们后面做力扣上背包面试题目的时候,大家就会感受出来了。

本文转载自微信公众号「代码随想录」,可以通过以下二维码关注。转载本文请联系代码随想录公众号。