深圳幻海软件技术有限公司 欢迎您!

改进YOLO:YOLOv5结合swin transformer

2023-02-28

文章参考于芒果大神,在自己的数据集上跑了一下,改了一些出现的错误。一、配置yolov5_swin_transfomrer.yaml#Parametersnc:10#numberofclassesdepth_multiple:0.33#modeldepthmultiplewidth_multiple:

文章参考于芒果大神,在自己的数据集上跑了一下,改了一些出现的错误。

一、配置yolov5_swin_transfomrer.yaml

  1. # Parameters
  2. nc: 10 # number of classes
  3. depth_multiple: 0.33 # model depth multiple
  4. width_multiple: 0.50 # layer channel multiple
  5. anchors:
  6. - [10,13, 16,30, 33,23] # P3/8
  7. - [30,61, 62,45, 59,119] # P4/16
  8. - [116,90, 156,198, 373,326] # P5/32
  9. # YOLOv5 v6.0 backbone by yoloair
  10. backbone:
  11. # [from, number, module, args]
  12. [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
  13. [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
  14. [-1, 3, C3STR, [128]],
  15. [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
  16. [-1, 6, C3STR, [256]],
  17. [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
  18. [-1, 9, C3STR, [512]],
  19. [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
  20. [-1, 3, C3STR, [1024]], # 9 <--- ST2CSPB() Transformer module
  21. [-1, 1, SPPF, [512, 512]], # 9
  22. ]
  23. # YOLOv5 v6.0 head
  24. head:
  25. [[-1, 1, Conv, [512, 1, 1]],
  26. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  27. [[-1, 6], 1, Concat, [1]], # cat backbone P4
  28. [-1, 3, C3, [512, False]], # 13
  29. [-1, 1, Conv, [256, 1, 1]],
  30. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  31. [[-1, 4], 1, Concat, [1]], # cat backbone P3
  32. [-1, 3, C3, [256, False]], # 17 (P3/8-small)
  33. [-1, 1, Conv, [256, 3, 2]],
  34. [[-1, 14], 1, Concat, [1]], # cat head P4
  35. [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
  36. [-1, 1, Conv, [512, 3, 2]],
  37. [[-1, 10], 1, Concat, [1]], # cat head P5
  38. [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
  39. [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
  40. ]

二、配置common.py文件

在common.py中增加以下下代码:

  1. class SwinTransformerBlock(nn.Module):
  2. def __init__(self, c1, c2, num_heads, num_layers, window_size=8):
  3. super().__init__()
  4. self.conv = None
  5. if c1 != c2:
  6. self.conv = Conv(c1, c2)
  7. # remove input_resolution
  8. self.blocks = nn.Sequential(*[SwinTransformerLayer(dim=c2, num_heads=num_heads, window_size=window_size,
  9. shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
  10. def forward(self, x):
  11. if self.conv is not None:
  12. x = self.conv(x)
  13. x = self.blocks(x)
  14. return x
  15. class WindowAttention(nn.Module):
  16. def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
  17. super().__init__()
  18. self.dim = dim
  19. self.window_size = window_size # Wh, Ww
  20. self.num_heads = num_heads
  21. head_dim = dim // num_heads
  22. self.scale = qk_scale or head_dim ** -0.5
  23. # define a parameter table of relative position bias
  24. self.relative_position_bias_table = nn.Parameter(
  25. torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
  26. # get pair-wise relative position index for each token inside the window
  27. coords_h = torch.arange(self.window_size[0])
  28. coords_w = torch.arange(self.window_size[1])
  29. coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
  30. coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
  31. relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
  32. relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
  33. relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
  34. relative_coords[:, :, 1] += self.window_size[1] - 1
  35. relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
  36. relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
  37. self.register_buffer("relative_position_index", relative_position_index)
  38. self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
  39. self.attn_drop = nn.Dropout(attn_drop)
  40. self.proj = nn.Linear(dim, dim)
  41. self.proj_drop = nn.Dropout(proj_drop)
  42. nn.init.normal_(self.relative_position_bias_table, std=.02)
  43. self.softmax = nn.Softmax(dim=-1)
  44. def forward(self, x, mask=None):
  45. B_, N, C = x.shape
  46. qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
  47. q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
  48. q = q * self.scale
  49. attn = (q @ k.transpose(-2, -1))
  50. relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
  51. self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
  52. relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
  53. attn = attn + relative_position_bias.unsqueeze(0)
  54. if mask is not None:
  55. nW = mask.shape[0]
  56. attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
  57. attn = attn.view(-1, self.num_heads, N, N)
  58. attn = self.softmax(attn)
  59. else:
  60. attn = self.softmax(attn)
  61. attn = self.attn_drop(attn)
  62. # print(attn.dtype, v.dtype)
  63. try:
  64. x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
  65. except:
  66. #print(attn.dtype, v.dtype)
  67. x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
  68. x = self.proj(x)
  69. x = self.proj_drop(x)
  70. return x
  71. class Mlp(nn.Module):
  72. def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
  73. super().__init__()
  74. out_features = out_features or in_features
  75. hidden_features = hidden_features or in_features
  76. self.fc1 = nn.Linear(in_features, hidden_features)
  77. self.act = act_layer()
  78. self.fc2 = nn.Linear(hidden_features, out_features)
  79. self.drop = nn.Dropout(drop)
  80. def forward(self, x):
  81. x = self.fc1(x)
  82. x = self.act(x)
  83. x = self.drop(x)
  84. x = self.fc2(x)
  85. x = self.drop(x)
  86. return x
  87. class SwinTransformerLayer(nn.Module):
  88. def __init__(self, dim, num_heads, window_size=8, shift_size=0,
  89. mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
  90. act_layer=nn.SiLU, norm_layer=nn.LayerNorm):
  91. super().__init__()
  92. self.dim = dim
  93. self.num_heads = num_heads
  94. self.window_size = window_size
  95. self.shift_size = shift_size
  96. self.mlp_ratio = mlp_ratio
  97. # if min(self.input_resolution) <= self.window_size:
  98. # # if window size is larger than input resolution, we don't partition windows
  99. # self.shift_size = 0
  100. # self.window_size = min(self.input_resolution)
  101. assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
  102. self.norm1 = norm_layer(dim)
  103. self.attn = WindowAttention(
  104. dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
  105. qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
  106. self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
  107. self.norm2 = norm_layer(dim)
  108. mlp_hidden_dim = int(dim * mlp_ratio)
  109. self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
  110. def create_mask(self, H, W):
  111. # calculate attention mask for SW-MSA
  112. img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
  113. h_slices = (slice(0, -self.window_size),
  114. slice(-self.window_size, -self.shift_size),
  115. slice(-self.shift_size, None))
  116. w_slices = (slice(0, -self.window_size),
  117. slice(-self.window_size, -self.shift_size),
  118. slice(-self.shift_size, None))
  119. cnt = 0
  120. for h in h_slices:
  121. for w in w_slices:
  122. img_mask[:, h, w, :] = cnt
  123. cnt += 1
  124. mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
  125. mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
  126. attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
  127. attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
  128. return attn_mask
  129. def forward(self, x):
  130. # reshape x[b c h w] to x[b l c]
  131. _, _, H_, W_ = x.shape
  132. Padding = False
  133. if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
  134. Padding = True
  135. # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
  136. pad_r = (self.window_size - W_ % self.window_size) % self.window_size
  137. pad_b = (self.window_size - H_ % self.window_size) % self.window_size
  138. x = F.pad(x, (0, pad_r, 0, pad_b))
  139. # print('2', x.shape)
  140. B, C, H, W = x.shape
  141. L = H * W
  142. x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
  143. # create mask from init to forward
  144. if self.shift_size > 0:
  145. attn_mask = self.create_mask(H, W).to(x.device)
  146. else:
  147. attn_mask = None
  148. shortcut = x
  149. x = self.norm1(x)
  150. x = x.view(B, H, W, C)
  151. # cyclic shift
  152. if self.shift_size > 0:
  153. shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
  154. else:
  155. shifted_x = x
  156. # partition windows
  157. x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
  158. x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
  159. # W-MSA/SW-MSA
  160. attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
  161. # merge windows
  162. attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
  163. shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
  164. # reverse cyclic shift
  165. if self.shift_size > 0:
  166. x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
  167. else:
  168. x = shifted_x
  169. x = x.view(B, H * W, C)
  170. # FFN
  171. x = shortcut + self.drop_path(x)
  172. x = x + self.drop_path(self.mlp(self.norm2(x)))
  173. x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
  174. if Padding:
  175. x = x[:, :, :H_, :W_] # reverse padding
  176. return x
  177. class C3STR(C3):
  178. # C3 module with SwinTransformerBlock()
  179. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
  180. super().__init__(c1, c2, n, shortcut, g, e)
  181. c_ = int(c2 * e)
  182. num_heads = c_ // 32
  183. self.m = SwinTransformerBlock(c_, c_, num_heads, n)

三、yolo.py文件配置

在parse_model(d, ch)函数中增加C3STR

四、train.py文件配置

在if __name__ == '__main__':中更改cfg

五、一些问题

1.NameError: name 'F' is not defined

在common.py中增加以下代码:

import torch.nn.functional as F

2.File "D:\Projects\yoloair-main\models\common.py", line 1519, in __init__
super().__init__(c1, c2, c2, n, shortcut, g, e)
TypeError: __init__() takes from 3 to 7 positional arguments but 8 were given

去掉一个c2。

3.NameError: name 'window_partition' is not defined

  1. def window_partition(x, window_size):
  2. """
  3. Args:
  4. x: (B, H, W, C)
  5. window_size (int): window size
  6. Returns:
  7. windows: (num_windows*B, window_size, window_size, C)
  8. """
  9. B, H, W, C = x.shape
  10. x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
  11. windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
  12. return windows

4.NameError: name 'window_reverse' is not defined

  1. ef window_reverse(windows, window_size, H, W):
  2. """
  3. Args:
  4. windows: (num_windows*B, window_size, window_size, C)
  5. window_size (int): Window size
  6. H (int): Height of image
  7. W (int): Width of image
  8. Returns:
  9. x: (B, H, W, C)
  10. """
  11. B = int(windows.shape[0] / (H * W / window_size / window_size))
  12. x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
  13. x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
  14. return x

 

文章知识点与官方知识档案匹配,可进一步学习相关知识
Python入门技能树预备知识常用开发工具237925 人正在系统学习中